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Abstract 

In the early winter of 2002 (November), the Alaska Denali earthquake (Mw=7.9) 

caused significant damage in partially frozen fine-grained soil and extensive 

liquefaction was observed in glacial fine-grained saturated soil surface deposits near 

Tok, Alaska. It illustrated that there was a need to evaluate the seismic response and 

liquefaction potential of fine-grain soil in cold regions; however, until now most of the 

research on the liquefaction phenomenon and seismic response were mainly about soil 

in non-cold regions. The seismic response and liquefaction potential of soils in cold 

regions, especially those of fine-grained nature, has not been studied thoroughly and 

therefore is not well-understood. 

This document presents a laboratory study on liquefaction potential and cyclic 

response of fine-grained soil in cold regions. As the main features of the soil in the 

ground of cold regions, temperature change at below freezing temperatures or 

near-freezing temperatures, and the seasonal climate change were evaluated on 

liquefaction potential, dynamic properties, and post-cyclic-loading settlement of 

fine-grained soils. Increasing temperatures from near freezing to the completely 

thawed temperature (i.e., 24ºC, 5ºC, 1ºC, and 0.5ºC) were used to thaw the frozen 

Mabel Creek silt to simulate temperature change on it, or the Mabel Creek silt 

experienced several freezing and thawing alternating processes (i.e., 1, 2, and 4 

freeze-thaw cycles)  to simulate seasonal climate change. Triaxial strain-controlled 

cyclic tests were conducted to evaluate liquefaction potential, dynamic properties, and 

post-cyclic-loading settlement. 

Based on this limited laboratory effort, results show that in most cases, temperature 

rise and freeze-thaw cycles can impact: a) liquefaction potential, b) dynamic 

properties and c) post-cyclic-loading settlement of fine-grained soils. However, there 
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was one case exception and this is decribed in the following sentence. When a 

fine-grained soil was conditioned in a partially frozen state, the possibility and threat 

of liquefaction significantly increased.  
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Technical Summary 

This study examines the influence of temperature rise and freeze-thaw cycles on the 

soil liquefaction potential. More specifically, dynamic properties and 

post-cyclic-loading settlement of fine-grained soils are evaluated in this study. The 

results can be used to predict seismic response of partially frozen, frozen, or thawed 

fine-grained soils in seismic subarctic regions. In other words, the influence of 

seasonal climate change on the seismic response of Mabel Creek silt is reported in this 

study. Systematic laboratory tests were conducted for the purpose of addressing the 

influence of temperature and cycles of freeze-thaw on liquefaction of Mabel Creek silt. 

The Alaska University Transportation Center (AUTC) and the Permafrost Technology 

Foundation (PTF) co-funded the work presented in this report. 

In November 2002, silts in the Mabel Creek area liquefied causing damage to 

roadways, roadway embankments, and backfill at some bridge abutments. Because of 

the damage, Mabel Creek silt was selected for this study. This silt is a fine-grained 

material commonly encountered in naturally seismically active subarctic regions. The 

soil samples used in this study were obtained near Northway, Alaska at Mile 76.2 on 

the Tok Cutoff Highway. The soil belongs to USCS class: ML. Extensive liquefaction 

was observed in the partially frozen fine-grained soil nearby during the Denali 

Earthquake in November 2002.  

Systematic laboratory tests were conducted for the purpose of addressing the 

influence of temperature and freeze-thaw cycles on liquefaction potential of the 

Mabel Creek silt. Increasing temperatures from near freezing to the completely 

thawed temperature (i.e., 0.5ºC, 1ºC, 5ºC, and 24ºC) were applied to thaw the frozen 

Mabel Creek silt specimens and to simulate temperature rise on it. Several freezing 

and thawing alternating processes were used to simulate seasonal climate change. 
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Triaxial strain-controlled cyclic tests were conducted to evaluate liquefaction potential 

and the influence of temperature on dynamic properties. After the cyclic loading tests 

were completed, soil samples were reconsolidated to evaluate settlement for a 

post-cyclic-loading state. In this study, liquefaction potential was evaluated as the 

pore water pressure ratio (ru), which is the ratio of pore water pressure to initial 

effective confining pressure. Dynamic properties were evaluated by damping ratio (D) 

and dynamic shear modulus (G). Post-cyclic loading settlement was investigated by 

the reconsolidated volumetric strain (εv), which is the ratio of the volume change due 

to dissipation of pore water pressure following cycle loading to the initial total 

volume of soil specimen.  

Partially frozen (conditioned at 0.5ºC) specimens were found to liquefy more readily 

than unfrozen specimens. The excess pore water pressure at the end of the 10
th

 

loading cycle was referred to as ru,10, which reflects the liquefaction potential. The 

higher the ru,10, the smaller the effective confining pressure and the easier for the soil 

to lose strength. Ten cycles of loading with a constant shear strain amplitude of 0.3% 

caused an ru,10 of 0.488 on the unfrozen specimen, but a much higher ru,10 of 0.582 on 

partially frozen Mabel Creek silt. Freeze-thaw cycles were found to densify the Mabel 

Creek silt and decrease liquefaction potential. After conditioning the specimen for 1 

freeze-thaw cycle, the pore water pressure at the 10
th

 load cycle decreased ru,10 to 

0.392; however, additional freeze-thaw cycles did not cause further change to the 

liquefaction potential. 

Freeze-thaw cycles were also found to affect the dynamic properties of the Mabel 

Creek silt. Generally, the first freeze-thaw cycle was found to densify the silt, increase 

the shear modulus (G), and increase the damping ratio (D). Additional freeze-thaw 

cycles on the Mabel Creek silt had only minor effects on both liquefaction potential 

and the dynamic properties. For a constant shear strain with amplitude of 0.1%, the 

shear modulus and damping ratio on the unfrozen specimens at the end of the 10
th

 



 

 

 xxi 

loading cycle (G10 and D10) were 11808 kPa (1713 psi) and 0.138, respectively. After 

a specimen was exposed to one freeze-thaw cycle, the shear modulus (G10) and 

damping (D10) were 13785 kPa (1999 psi) and 0.163, respectively. When specimen 

conditioning was changed from two (2) freeze-thaw cycles to four (4) freeze-thaw 

cycles, the shear modulus at the 10
th

 load cycle (G10) decreased slightly from 13834 

kPa (2006 psi) to 14834 kPa (2151 psi). Damping (D10) values at 2 and 4 freeze-thaw 

cycles were found to be 0.174 and 0.180; however, when a specimen was conditioned 

in the partially frozen state, G10 increased to 19539 kPa (2833 psi) and D10 decreased 

to 0.320. 

Partially frozen Mabel Creek silt was found to have the lowest post-cyclic-loading 

settlement. The lowest post-cyclic-loading settlement occurred because of an existing 

ice structure. Consider an unfrozen specimen of Mabel Creek silt. After the first 

freeze-thaw cycle, a specimen of this Mabel Creek silt shows a decrease in 

post-cyclic-loading settlement as compared with an unfrozen specimen of the same 

silt. However, further freeze-thaw cycles do not change post-cyclic-loading settlement. 

If the excess pore water pressure ratio of 0.8 is dissipated after seismic loading, the 

potential settlement of the partially frozen specimens is represented as the 

reconsolidated volumetric strain (εv). The εv was 0.92%, which means that the 

settlement was 0.92 feet for a soil layer 100 ft thick. When specimens were subjected 

to 1, 2, and 4 freeze-thaw cycles, and the thawed specimens were subjected to cyclic 

loading, the reconsolidated volumetric strain reached approximately 1.64% for each 

of these conditions. The unfrozen specimen subjected to cyclic loading had an εv of 

2.16%, which was higher than the εv of Mabel Creek silt subjected to freeze-thaw 

cycles.  

Based on this limited laboratory effort, results show that in most cases temperature 

rise and freeze-thaw cycles can increase liquefaction potential, shear modules, 

damping ratio and post-cyclic-loading settlement of fine-grained soils; however, there 



 

 

 xxii 

was one case to be specially noted. When a fine-grained soil was conditioned in a 

partially frozen state, the possibility and threat of liquefaction increased strongly. 

These findings are very important. As the price of land increases, the pressure to build 

in marginal soils increases. Therefore, these findings make an important contribution 

to the engineering community. They can be used for both design and investigation of 

seismically active sites, especially when considering the design of a newly 

constructed foundation site in partially frozen silt (for example, coastal regions, river 

valleys, and the margin of lakes) in subarctic regions. 
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1 Introduction  

1.1 Problem statement 

Since the 1964 Alaska Earthquake (Mw=9.2), there have been numerous research 

efforts on the subject of liquefaction. Liquefaction typically occurs when an 

earthquake shakes saturated cohesionless soils. Saturation is when the voids between 

soil particles are completely filled with water. Earthquake loading causes the pore 

water pressure to increase due to undrained conditions (i.e., pore water pressure 

cannot dissipate quickly). Significant increase of pore water pressure can cause easy 

movement of the soil particles. This may finally lead to a complete loss of shear 

strength of the ground. This phenomenon is known as ―liquefaction.‖ The loss of 

shear strength due to liquefaction can cause extensive damage, including settlement 

and tilting of buildings and bridge abutments, collapse of offshore structures, lateral 

spreading and cracking of slopes, flow failures of earth dams, cracking of pavements, 

and flotation of buried structures to the ground surface (Dobry et al. 1982).  

Previous research efforts on the liquefaction phenomenon and cyclic resistance of 

soils mainly focused on grounds with moderate temperatures (e.g., Lee and Seed 1967; 

Seed 1968; Seed and Idriss 1971; Finn et al. 1971; Castro 1975; Youd and Idriss 2001; 

Bray and Sancio 2006; Boulanger and Idriss 2006). The seismic response and 

liquefaction potential of soils in cold regions, especially those of fine-grained nature, 

have not been studied thoroughly and therefore are not well understood. This study 

was aimed at addressing the need to investigate the liquefaction potential and dynamic 

characteristics of commonly encountered soil types in Alaska. In an attempt to 

identify a cold-region soil liquefaction response, the author embarked on an extensive 

experimental research program 
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Saturated fine-grained, non-plastic to low-plasticity soil deposits are commonly 

encountered in the seismically active Arctic region. Moderate to strong shaking of 

such deposits can lead to significant pore pressure generation and ultimately to 

liquefaction if the pore water is completely unfrozen. If the pore water is fully frozen, 

no pore pressure is generated. As the ground temperature nears the freezing point (i.e., 

0
o
C), the state of the pore water becomes ―partially frozen‖. The response of the 

ground to earthquake loading in this case is completely different from either the fully 

frozen or the unfrozen case. The stiffness of the ground typically increases with 

decreasing temperature (Vinson 1978); however this increase in stiffness may not 

translate into decreasing liquefaction potential. This is because formation of ice layers 

within the ground can lead to a decrease in permeability. Together with earthquake 

loading, this may become a significant contributing factor to liquefaction of the 

ground at near-freezing temperature. During the November 3, 2002, Denali 

Earthquake, significant liquefaction damage was observed at near-freezing ground 

temperatures (Yashinsky and Eidinger 2003). 

The objectives of this study are to explore: 

 The effect of ground temperature on the cyclic resistance and dynamic properties 

of fine-grained soils, 

 The role of freeze-thaw cycles (i.e., seasonal variation of ground temperature) on 

liquefaction potential and cyclic behavior of fine-grained soils, and 

 The cyclic-induced settlement of fine-grained soil, considering unfrozen 

conditions and near-freezing temperature, as well as freeze-thaw cycles. 

 

1.2 Outline of dissertation  

Chapter 1 briefly introduces the characteristics of seismic events and the necessity and 

significance of research regarding liquefaction potential and dynamic behavior of 
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fine-grained soil in cold regions. Near-freezing ground temperature and seasonal 

freeze-thaw cycles are considered very important factors and constitute the major 

objectives in this study. Furthermore, organization of this dissertation is briefly 

described.   

Chapter 2 presents the literature review of soil liquefaction potential, 

cyclic-loading-induced dynamic properties, and post-cyclic-loading settlement. The 

influence of ground temperature and freeze-thaw cycles on these parameters is 

reviewed.  

Chapter 3 introduces the laboratory test methodology that was used in this study. A 

discussion is included to describe how the material used for testing was selected.  

Also, other subjects included are:  index properties of the test material; modifications 

of the triaxial chamber; sample reconstitution of the test material; saturation and 

consolidation of test specimens, thermal conditioning of the test specimens; and the 

test procedure used to conduct strain-controlled cyclic tests. Raw data reduction was 

used to obtain the soil’s liquefaction potential and dynamic properties.  

Chapter 4 discusses the impact of ground temperature and freeze-thaw cycles on pore 

pressure generation (liquefaction potential) of fine-grained soil. The liquefaction 

potential of fine-grained soil is evaluated by pore pressure history and excess pore 

pressure generation curves among specimens conditioned at various temperatures or 

various freeze-thaw cycles. 

Chapter 5 provides a discussion on the influence of ground temperature and 

freeze-thaw cycles on shear modulus and damping ratio. These dynamic properties 

were evaluated by comparing dynamic shear modulus and damping ratio with respect 

to number of loading cycles, cyclic shear strain, and excess pore pressure ratio. 

Moreover, degradation of dynamic shear modulus in undrained cyclic loading tests on 
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specimens at various temperatures or freeze-thaw cycles is analyzed. A prediction 

model is provided for the degradation of dynamic shear modulus at these conditions.     

Chapter 6 discusses the influence of soil type (silt, silty sand and clean sand), ground 

temperature, and freeze-thaw cycles on post-cyclic-loading settlement of a 

fine-grained soil. A series of charts is produced to predict post-cyclic-loading 

settlement according to a given equivalent cyclic shear strain and a given number of 

loading cycles. 

Chapter 7 presents a discussion on how the ground temperature and freeze-thaw 

cycles affect the soil’s liquefaction potential, dynamic properties, and 

post-cyclic-loading settlement.  

Chapter 8 summarizes findings and lists the conclusions drawn from this study. 
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2 Review of Previous Studies 

2.1 Impact of ground temperature and freeze-thaw process on physical and 

mechanical properties of soil 

Soil micro fabric, and physical and mechanical properties can be affected by soil 

temperature (Andersland and Anderson 1978). It has been reported that the freezing 

and thawing process substantially affects hydraulic conductivity of compacted silts 

and clays (Chamberlain and Gow 1978; Konrad 1989; Benson et al. 1995; Zimmie 

and La Plante 1990; Othman and Benson 1993). Chamberlain and Gow (1978) 

reported that the hydraulic conductivity increased with the increasing number of 

freeze-thaw cycles. They attributed this increase of hydraulic conductivity to the 

formation of ice lenses. When ice melts in frozen soil, the resulting cavities act as 

channels to increase the permeability of the soil. Othman and Benson (1993) showed 

that hydraulic conductivity could increase by one or two orders of magnitude after 

just one freeze-thaw cycle, but there was no further increase in hydraulic conductivity 

after 3 to 5 freeze-thaw cycles. Greater changes in permeability also occurred with 

faster rates of freezing. 

Change of void ratio due to freeze-thaw processes was also reported (Konrad 1989; 

Viklander 1998; Qi et al. 2008). Viklander (1998) and Qi et al. (2008) reported a 

critical void ratio in fine-grained soil.  They also showed that both both loose and 

dense fine-grained soil would eventually reach the critical void ratio after many 

freeze-thaw cycles. The variation of the pore pressure during freeze-thaw processes 

was recorded on saturated low-plastic clayey silt by Eigenbrod et al. (1996). They 

found that the pore water pressure varied cyclically during freezing. Formation of ice 

lenses during freezing increased pore water pressure, and this decreased the effective 

stress toward zero so as to speed up the formation of ice lenses. As more and more ice 
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lenses formed, further increase in the pore water pressure promoted suction toward 

the growing ice lenses adjacent to the unfrozen soil portion, and this appeared to 

cause the pore water pressure to decrease. Then, decreasing pore water pressure 

caused an increase of effective stress and thus, compressed the soil. The compression 

of soil inversely increased pore water pressure once more. Such cyclic variation of 

pore water pressure during freezing continued until steady state was reached. A 

sudden drop in pore water pressure was reported as a thawing began, and this was 

associated with a sudden drop in specific volume as ice transformed to water. As the 

soil continued to thaw, there was an increase in permeability and fissures, which 

dissipated the thawed water. This caused an increase in pore water pressure. From the 

above, it is clear that changes in microstructure and physical properties during 

freeze-thaw processes eventually can cause changes in mechanical properties.  

Moreover, changes in mechanical properties are strongly affected by drainage 

conditions during freezing and thawing (Alkire 1981; Alkire and Morrison 1983). 

Alkire (1981) studied the freeze-thaw processes on a silt by conducting a series of 

triaxial tests for different drainage conditions during freezing and thawing. His results 

showed that the drained frozen and the undrained thawed condition produced the 

lowest post-thaw shear strength, the highest water content, and the largest strain at 

failure for a post-thaw state. During repeated loading tests, softer stress-strain curves 

and lower strength were found on undrained fine-grained soil experiencing a 

freeze-thaw cycle in comparison with samples not subjected to a freeze-thaw cycle 

(Alkire and Morrison 1983). 

2.2 Liquefaction in partially frozen or frozen soil  

The liquefaction resistance of fine-grained soil has been extensively investigated by a 

number of researchers. Most previous investigations on cyclic resistance and 

liquefaction potential in fine-grained soils were conducted for unfrozen ground 
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conditions. Understanding how ground temperature or the freezing-thawing process 

affects liquefaction potential is difficult. It is further complicated if susceptibility to a 

random excitation, such as a seismic event, is to be addressed for soil at near freezing 

temperature (i.e., partially frozen glacial fine-grained soils).  

Using field studies and numerical analysis, Finn and Yong (1978) and Finn et al. 

(1978) showed that sandwiched soil layers were easily liquifed by seismic events 

when a saturated cohesionless soil layer is interstratified by a frozen surficial layer 

and a perennially frozen layer. This occurs because the frozen layers sealed the 

boundary of unfrozen saturated layers and prevented dissipation of the pore pressure 

that is caused by seismic events. Therefore, the liquefaction potential increased. 

However, the studies of Finn and Yong (1978) and Finn et al. (1978) did not consider 

the influence of the ground temperature, especially near-freezing temperature, on 

liquefaction potential.  

In the past, many of the studies that were conducted to investigate the influence of the 

freezing and thawing processes on soil liquefaction resistance were aimed at obtaining 

high-quality undisturbed samples for liquefaction tests by a quick-freezing method. 

Goto (1993), Yoshimi et al. (1994) and Yoshimi and Goto (1996) investigated the 

effect of the uni-directional quick freeze-thaw cycle on liquefaction resistance of 

clean sand and sand with various fines ranging from 0 to 20%. They concluded that a 

quick uni-directional freeze-thaw cycle did not affect the liquefaction resistance of 

clean sand; however, the quick-freezing method disturbed clean sand with fines, and a 

correction factor was needed to describe liquefaction resistance. Moreover, an 

undrained condition during freezing was found to strongly increase disturbance of 

sampling, but a drained condition during freezing did not. Quick-freezing may be 

argued to be inconsistent with seasonal climate change (a much slower temperature 

change).   
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2.3 Dynamic properties of fine-grained soil 

Dynamic properties of fine-grained soil are very important characteristics that reflect 

the soil’s response under dynamic loading. Dynamic shear modulus (G) and damping 

ratio (D) are two important dynamic properties to represent the relationship between 

stress-strain and energy dissipation under dynamic loading. These two properties can 

be used to determine wave propagation and corresponding response of stress and 

strain in soil.  

As soil is a nonlinear material, dynamic shear modulus and damping ratio in soil are 

determined by many factors. In unfrozen soils, it was found that factors, such as 

confining pressure, void ratio, geologic age, cementation, overconsolidation ratio, 

plasticity index, cyclic strain, strain rate, and number of loading cycles, all played 

roles in these two properties (Hardin and Drnevich 1972; Kokusho et al. 1982; Dobry 

and Vucetic 1987). Based on previous studies, the effect of the above factors was 

summarized by Dobry and Vucetic (1987) as shown in Table 2.1.   

Usually, the effect of ground temperature on dynamic properties has been investigated 

in frozen soil with varying water content and temperature. In past decades, many 

studies have been done to investigate the dynamic properties of frozen soil by using 

the longitudinal-wave test, cyclic triaxial test, resonant column test, and ultrasonic test. 

Consensus knowledge on the dynamic properties of frozen soil has been obtained. 

Temperature, strain amplitude, frequency, confining pressure, and void ratio or water 

content—all these factors influence the dynamic stiffness and the damping properties 

of frozen soil (Stevens 1975; Andersland and Anderson 1978; Vinson 1978; 

Czajkowski and Vinson 1980; Vinson et al. 1983; Fukuda and Huang 1991). These 

conclusions are summarized in Table 2.2. 

Decrease of temperature in frozen soil below the thaw point generally increases 
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dynamic stiffness and decreases damping ratio. Also, an increase in water content 

generally increases dynamic stiffness and decreases damping ratio at a temperature 

close to the thaw point. The situation is reverse when the temperature decrease is far 

below the thaw point (Stevens 1975; Andersland and Anderson 1978; Vinson 1978; 

Czajkowski and Vinson 1980; Vinson et al. 1983; Fukuda and Huang 1991). Prior to 

this study, the investigation of the influence of the near-freezing temperature in 

fine-grained soil on dynamic properties was limited.  

Table 2.1  Effect of various factors on maximum shear modulus (Gmax), modulus 

reduction (G/Gmax), and damping ratio (D) of normally consolidated and 

moderately overconsolidated clays (after Dobry and Vucetic 1987) 

Increasing factor Gmax G/Gmax D 

Confining pressure, 

σ’0 

Increases with σ’0 Stays constant or 

increases with σ’0 

Stays constant or 

decreases with σ’0 

Void ratio, e Decreases with e Increases with e Decreases with e 

Geologic age, tg Increases with tg May increase with tg Decreases with tg 

Cementation, c Increases with c May increase with c May decrease with c 

Overconsolidation, 

OCR 

Increases with OCR Not affected Not affected 

Plasticity index, PI Increases with PI if 

OCR>1; Stays about 

constant if OCR=1 

Increases with PI decreases with PI 

Cyclic strain, γ -- Decreases with γ Increases with γ 

Strain rate,   

(frequency of cyclic 

loading) 

Increases with   G increases with  ; 

G/Gmax probably not 

affected if G and Gmax 

are measured at same 

  

Stays constant or may 

increase with   

Number of loading 

cycles, N 

Decreases after N 

cycles of large γ but 

recovers later with 

time 

Decreases after N 

cycles of large γ (Gmax 

measured before N 

cycles) 

Not significant for 

moderate γ and N 
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Table 2.2  Effect of various factors on shear modulus (G) and damping ratio (D) of 

frozen soil (combine data from Stevens 1975; Andersland and Anderson 

1978; Vinson 1978; Czajkowski and Vinson 1980; Vinson et al. 1983; 

Fukuda and Huang 1991) 

Increasing factor G D 

Temperature below 

freezing point, T 

Decreases with T Increases with T; increasing 

rate of D increases with T 

Cyclic strain, γ Decreases with γ increases with γ 

Frequency, f Increases with f; 

Change rates of G in low f is greater 

than change rates of G in high f 

Decreases with f; Change rates 

of D in low f is greater than 

change rates of D in high f 

Confining pressure, σ’0 Not affected Not affected, except that D 

tends to decrease with σ’0 at T 

close to freezing point 

Water content, WC Increases with WC at high 

below-freezing temperature; 

Decreases with WC at low 

below-freezing temperature; 

Decreases with WC at high 

below-freezing temperature; 

Increases with WC at low 

below-freezing temperature; 

Plasticity index, PI Increases with PI decreases with PI 

Cyclic strain, γ Decreases with γ Increases with γ 

Strain rate,   

(frequency of cyclic 

loading) 

G increases with  ; G/Gmax probably 

not affected if G and Gmax are 

measured at same   

Stays constant or may increase 

with   

Number of loading 

cycles, N 

Decreases after N cycles of large γ 

(Gmax measured before N cycles) 

Not significant for moderate γ 

and N 

 

2.4 Post-cyclic-loading-induced settlement 

Soil liquefaction not only causes loss of soil strength, but also subsidence of the 

ground surface. After a seismic event, volume change of the soil deposit is usually 

found with dissipation of excess pore water pressure. This change in volume is 

manifested as settlement of the ground surface. Dramatic settlements are often 

observed after earthquakes. Volumetric strains about 1% to 10% and maximum 

settlements of more than 0.5m have been observed during previous earthquakes: 
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Niigata Earthquake 1964, Tokachi-oki Earthquake 1968 and Nihonkai-chubu 

Earthquake 1983 (Nagase and Ishihara 1988). Since ground subsidence always causes 

the greatest damage to the infrastructure and land based structures, investigation of 

post-cyclic-loading settlement is very important. 

2.4.1 Influence factors on post-cyclic-loading-induced settlement 

Lee and Albaise (1974) conducted cyclic triaxial tests on 6 different uniformly graded 

clean sand samples with medium grain size from 0.1mm to 3.0mm in order to 

investigate earthquake induced settlement. The impact of effective confining 

pressures (varied from 15 psi to 60 psi) and relative densities (varied from 30% to 

85%) on the reconsolidated volumetric strain, εv, which is the ratio of the discharged 

water volume, ΔV, to the gross soil volume, V, was studied respectively. Static loading 

was also applied to check the influence of loading types. Results of the study revealed 

that reconsolidated volumetric strain under non-liquefaction conditions increased with 

an increase in effective confining pressure, an increase in grain size of the soil, a 

decrease of relative density, and an increase of excess pore pressure. The types of 

static loading and cyclic loading did not affect reconsolidated volumetric strain.  

Nagase and Ishihara (1988) conducted irregular cyclic shear tests on Fuji River sand 

under uni-directional and multi-directional loading conditions. Specimens with 

relative density of 47%, 73%, and 93% were studied. The results indicated that the 

reconsolidated volumetric strain was uniquely dependent on the excess pore pressure 

under no-liquefaction conditions; however, under liquefaction conditions, maximum 

shear strain replaced the excess pore pressure as the controlling factor for the 

reconsolidated volumetric strain. The direction of irregular loading was found to have 

no effect on the reconsolidated volumetric strain.   

Ohara and Matsuda (1988) investigated the settlement induced by undrained cyclic 
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strain-controlled simple shear test strain tests on Kaolin Clay. The parameters 

including number of loading cycles from 10 to 200, cyclic shear strain from 0.05% to 

3%, and an overconsolidation ratio from 1 to 6 were investigated.   These studies 

were done to understand the mechanism of cyclic-loading-induced settlement on clay. 

Ohara and Matsuda (1988) found that the clay’s seismic settlement was dependent on 

the overconslidation ratio and excess pore pressure.  This was true, regardless of the 

number of cycles and cyclic shear strain. It was found that increasing 

overconsolidated ratio and decreasing excess pore pressure decreased 

cyclic-loading-induced settlement.  

Chien et al. (2002) compared the influence of the fine content on the seismic 

settlement on Yunlin sand with 0-30% fines and relative densities from 35% to 75%. 

Their conclusion showed that decrease of relative density and increase of fine 

contents increased the liquefaction-induced settlement. However, Derakhshandia et al. 

(2008) conducted cyclic loading tests on Monterey sand with 0-20% fines and found 

that fine contents did not cause much difference on cyclic-loading-induced settlement 

under non-liquefaction conditions.  

2.4.2 Prediction of post-cyclic-loading-induced settlement 

Tokimatsu and Seed (1987) developed prediction charts for earthquake induced 

settlement in saturated sand under non-liquefaction and liquefaction conditions. They 

pointed out that in liquefaction conditions, earthquake induced settlement of saturated 

sand could be derived from the equivalent cyclic stress ratio and soil’s SPT-N value. 

But for non-liquefaction conditions, earthquake induced settlement was determined by 

generated excess pore pressure ratio or normalized stress ratio.  

Ishihara (1996) proposed a better prediction chart by coordinating the relationship 

between the volume change of saturated sand and maximum shear strains and the 
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relationship between the factor of safety and the maximum shear strains. This chart 

could be used to predict the post-cyclic-loading settlement directly from the factor of 

safety against liquefaction and SPT-N value (or relative density) regardless of 

non-liquefaction or liquefaction conditions, as shown in Figure 2.1.  

Tsukamoto et al. (2004) provided a procedure for evaluating post-liquefaction 

settlement on silty sand with about 20% fines by using the irregular excitation time 

history simulating the 1995 Kobe Earthquake. This procedure used the relationships 

between factor of safety against liquefaction, relative density, and reconsolidated 

volumetric strain to derive the post-liquefaction settlement.   
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Figure 2.1  Chart for determination of post-liquefaction volumetric strain as a 

function of factor of safety (after Ishihara 1996) 
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3 Experimental Program 

Cyclic triaxial, undrained, stress-controlled and strain-controlled tests were conducted 

on a fine-grained soil to investigate liquefaction potential, dynamic properties, and 

cyclic-loading-induced settlement. Two series of tests were carried out. The first 

series of tests was performed on specimens conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, and 

-0.2ºC. This series focused on the impact of ground temperature, especially at 

near-freezing state, on excess pore pressure generation and cyclic resistance. The 

second series of tests was conducted on specimens subjected to various numbers of 

freeze-thaw cycles.  This was done to investigate how freeze-thaw cycles affect:  a) 

excess pore pressure generation and b) the dynamic characteristics.  To evaluate 

cyclic-loading-induced settlement, the results from all of the tests performed 

throughout this study were used. At the end of each test, the drainage valves on the 

triaxial test chamber were opened and the volume change with dissipation of pore 

water pressure was measured.  

3.1 Material tested  

Soil samples were obtained from a site near Mabel Creek Bridge and Slana River 

Bridge on the Tok Cutoff Highway in Alaska, as shown in Figure 3.1. An excavator 

was used to dig down approximately 3 meters deep in the bank of Mabel Creek. 

Disturbed soil samples were collected for the purpose of reconstituting soil specimens 

in the laboratory. This soil will be referred to as Mabel Creek silt throughout this 

document. The reason why this specific site was selected for soil sampling is that 

extensive liquefaction and associated damages were observed at and around this 

location during the November 3, 2002, Denali Earthquake (Mw=7.9). The maximum 

horizontal and vertical deformations around the Slana River bridge (see Figure 3.2), 

which is about 1 km south of the Mabel Creek bridge, were measured to be about 75 

cm and 45 cm, respectively.  
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Figure 3.1 Sampling location at milepost 76.2 on the Tok Cutoff Highway in Alaska 

 

Figure 3.2  Liquefaction-induced lateral spreading in Tok Cutoff Highway 

embankment (abutment of Slana River Bridge embankment, which is 1 

km away from Mabel Creek Bridge) 
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After the earthquake, Alaska Department of Transportation and Public Facilities (AK 

DOT&PF) initiated a repair program for the damaged transportation infrastructure 

around the site. Through this repair program a fairly extensive site investigation was 

conducted. Four boring logs from the site are presented in Figure 3.3. To better 

evaluate the stratigraphy, SPT results from the four boreholes are replotted together 

and presented in Figure 3.4. Consisting mainly of silt, the layer of concern in these 

profiles is located below the top layers of fill at about a 6 to 12 m depth below the 

ground surface. The SPT-values (N60) were relatively low, ranging from 4 to 12. Due 

to the relatively shallow water table, which is located at approximately 2.95-4.05 m 

below the ground surface, the layer of concern was fully saturated.  

 

(a) Test log in Bore Hole 1 

Figure 3.3  Test log in bore holes (after MACTEC Engineering and Consulting 2004) 
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(b) Test log in Bore Hole 2 

Figure 3.3  Test log in bore holes (after MACTEC Engineering and Consulting 2004) 
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(c) Test log in Bore Hole 3 

Figure 3.3 Test log in bore holes (after MACTEC Engineering and Consulting 2004) 
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(d) Test log in Bore Hole 4 

Figure 3.3  Test log in bore holes (after MACTEC Engineering and Consulting 2004)  
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Figure 3.4  SPT value in tested bore holes (after MACTEC Engineering and 

Consulting 2004) 
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A series of conventional geotechnical tests were conducted to characterize Mabel 

Creek silt. Index properties including grain size distribution, specific gravity, 

Atterberg limits, optimum water content, and maximum and minimum index void 

ratios were determined. The results from these tests are summarized in Table 3.1.  

The grain size distribution of Mabel Creek silt was determined in general accordance 

with ASTM D422-63, Standard Test Method for Particle Size Analysis of Soils. The 

Mabel Creek silt may be classified as an ML type soil as per USCS. Approximately 

99% of this soil was measured to pass through No. 200 sieve (74 μm). The mean grain 

size D50 was found to be 0.007 mm. The coefficient of uniformity, Cu, was measured 

as 7.50 and the coefficient of curvature, Cc, was found to be 1.48. The grain size 

distribution is presented in Figure 3.5. 

Table 3.1  Soil index properties of Mabel Creek silt 

USCS Classification Symbol ML 

Specific Gravity, Gs 2.78 

D10 0.0012 mm 

D50 0.007 mm 

D60 0.009 mm 

Coefficient Of Uniformity, Cu 7.50 

Coefficient Of Curvature, Cc 1.48 

Liquid Limit (%) 34.5 % 

Plastic Limit (%) 29.2 % 

Plasticity Index 5.3 

Optimum Water Content (ASTM D1557) 20.2 % 

Maximum Dry Unit Weight(ASTM D1557) 1570 kg/m3 

Max Index Density(ASTM D4253) 1270 kg/m3 

Min Index Void Ratio(ASTM D4253) 1.18 

Min Index Density(ASTM D4254) 600 kg/m3 

Max Index Void Ratio(ASTM D4254) 3.67 
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Figure 3.5  Grain size distribution of Mabel Creek silt 

 

The specific gravity for each soil was determined in general accordance with ASTM 

D854-00, Standard Test Method for Specific Gravity of Soil. It was found to be 2.78.  

The liquid and plastic limits of the Mabel Creek silt were measured in accordance 

with the procedures outlined in ASTM D4318-00. The plastic limit was measured as 

29.2% and the liquid limit was measured as 34.5%. These measurements indicate a 

plasticity index of 5.3, which refers to a low plasticity type soil.  

ASTM D1557-02 was applied to determine the optimum moisture content and the 

corresponding dry density of the Mabel Creek silt. 

Dry soil samples were weighed to approximately 2kg. Water was measured to 0.1g of 

the target moisture content for each test. Target moisture contents of up to 20% of the 

dry soil weight were tested in about 5% increments. The soil and water test samples 

were hand mixed and stored in sealed plastic bags for a minimum of 24 hours before 

compaction.  



 

 

 23 

The modified compaction was performed by a Soil Test Mechanical Soil Compactor 

(model CN-4235) in 4 inch diameter molds conforming to the requirements of ASTM 

D1557-02. Each test was performed in 5 lifts and 25 blows per lift using a round foot 

on the mechanical rammer.  

After compaction, the test samples were dried, either in whole or in part, to determine 

the resulting moisture content. The optimum water content and the corresponding dry 

density were found to be 20.2% and 1570 kg/m
3
, respectively, and are shown in 

Figure 3.6. 

There is no ASTM procedure to determine the maximum index density (i.e., minimum 

void ratio) for silt. The ASTM D4253-00 procedure, which determines maximum 

index density of soils using a vibration table, is limited to soils with less than 15% 

fine content. Hazirbaba (2005) performed vibratory table tests and Modified Proctor 

compaction tests to determine the minimum void ratios of a sand with different fine 

contents and concluded that smaller void ratio values (i.e., denser state of soil) may be 

obtained from Modified Proctor test at fines content larger than 20%. Thus, the 

Modified Proctor procedure (ASTM D1557-02) was adopted for determining the 

minimum void ratio of Mabel Creek silt. Through this approach, the minimum index 

void ratio (emin) for Mabel Creek silt was found to be 0.77 with a corresponding 

maximum index density (γmax) of 1570 kg/m
3
. 

The ASTM procedure for minimum index density (ASTM D4254-00) is similarly 

limited to soils with less than 15% fine content. Despite this limitation, repeatable 

minimum index density values for Mabel Creek silt were successfully obtained from 

the two applicable methods, namely Method B and Method C, presented in the ASTM 

D4254-00 specification. The measured minimum index density values were 600 

kg/m
3
 from Method B and 620 kg/m

3 
from Method C. Because the repeatability of the 

result from Method B was slightly better, the result from Method B was used as the 
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minimum index density with a corresponding maximum void ratio of 3.67.  
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Figure 3.6  Optimum moisture content curve for Mabel Creek silt 

3.2 Cyclic triaxial tests 

In terms of loading conditions, the two commonly used approaches for conducting 

cyclic triaxial tests are: 1) stress-controlled approach, and 2) strain-controlled 

approach. The strain-controlled approach was adopted as the core testing procedure 

for this study because the main mechanism for the occurrence of liquefaction under 

seismic loading conditions is the generation of excess pore water pressure, and the 

generation of excess pore pressure is more directly related to the induced shear strains 

than stresses (Hazirbaba 2005). Additionally, strain-controlled tests provide more 

realistic pore pressure measurements than stress-controlled tests, and generation of 

excess pore water pressure in strain-controlled tests is less sensitive to factors such as 

relative density, soil fabric, and previous loading (Dobry et al. 1982). Thus, a more 

fundamental approach to study the seismic response and liquefaction potential of soils 

would be to examine the pore water pressure generation mechanism directly through 

strain-controlled cyclic tests. 
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3.2.1 University of Alaska Fairbanks (UAF) cyclic triaxial apparatus 

MTS type triaxial (TX) equipment was employed to carry out the cyclic loading 

testing program for this study. A sketch of the testing system used is shown in Figure 

3.7, and a picture of the triaxial cell is presented in Figure 3.8. The testing equipment 

was modified to closely simulate the in-situ freezing process of soils. The top cap and 

bottom platen of the triaxial setup were designed to be connected to an external 

cooling unit, which allows for controlling the temperature of the triaxial specimen. 

Additionally, antifreeze coolant was used to further decrease the temperature of the 

soil specimen. The antifreeze coolant was gone through a helical brass coil 

surrounding the triaxial specimen to create a multi-dimensional freezing process. To 

minimize heat loss and help maintain a constant target temperature during the freezing 

process, the triaxial cell was insulated with a Styrofoam box. To continuously monitor 

and control the temperature inside the triaxial cell and around the soil specimen, six (6) 

separate thermistors were installed, as shown in the schematical drawing in Figure 3.7. 

The displacement was measured with a high precision LVDT, and the load was 

monitored using a load cell. Details of the sensors used are presented in Table 3.2.  
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Figure 3.7  (a) schematic drawing of test apparatus (b) installation of thermistors in 

cylindrical triaxial soil specimen  
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Figure 3.8  Modified triaxial test system 

Table 3.2  Setup and the sensors used in triaxial system 

Setup or sensors Range Sensitivity 

External cooling unit -50°C~40°C ±0.02°C 

Thermistor -80°C~75°C ±0.1°C 

Precision LVDT ±0.50 mm ±0.001 mm 

Load cell ±500 lb ±1 lb 

Pore water pressure transducer ±100 psi ±0.20 psi 

Volume change transducer 80 ml ±1 ml 

 

 

 

 

Antifreeze liquid 

Brass coiling 

Hoses connected to refrigerated cooling bath 
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3.2.2 Specimen preparation, saturation, and consolidation 

The specimens tested were 101.6 mm in diameter and 211.0mm in height. They were 

reconstituted by the undercompaction method (Ladd 1978) with initial water content 

that produced 50 % saturation in the specimen. The moist soil was placed in layers 

within the mold. To compensate for densification during compaction, the bottom layers 

were formed to have slightly looser densities than the layers above them. Thus, 

approximately uniform density distribution throughout the specimen could be attained 

through the whole compaction process. The drilling borehole data (Figure 3.3) 

showed that the fully saturated Mabel Creek silt layer had a water content of about 

38%. Using the measured specific gravity of 2.78 for Mabel Creek silt, the average in 

situ void ratio corresponding to 100 kPa effective confining pressure was found to be 

1.06. Thus, all specimens were prepared at a target void ratio of 1.06. The procedure 

for calculating the void ratio is presented in Appendix A. The slight densification that 

typically occured during saturation and consolidation was accounted for by forming 

the specimens at an initial void ratio of 1.08. A list of the tests performed is presented 

in Table 3.3, Table 3.4, Table 3.5, and Table 3.6. Here the unfrozen specimen in those 

tables is referred to as the specimen without any freezing or thawing conditioning.  

To help expedite the saturation process, the specimen was first percolated with carbon 

dioxide for about 1 hour at a pressure difference (i.e., the head between top and 

bottom of the specimen) of approximately 10 kPa. Then, the specimen was flushed 

with de-aired water. The flushing of de-aired water at a relatively low pressure 

difference of 15 kPa was completed in about 24 hours. Full saturation of the specimen 

was achieved through application of backpressures of approximately 100 kPa. After a 

minimum acceptable B-value of 0.95 was obtained, the consolidation procedure was 

started. All of the specimens were isotropically consolidated to the desired effective 

confining stress of approximately 100 kPa. Some of the tests were conducted at a 

slightly higher or lower effective confining stress than 100 kPa. This was due to the 
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fluctuation in the air pressure source over the long duration of testing (especially for 

specimens conditioned at different temperatures). Nonetheless, constant effective 

confining stress was maintained throughout each test. Following completion of 

consolidation, the group of specimens prepared for the study of moderate ground 

conditions (i.e., unfrozen soil) were directly subjected to undrained cyclic 

strain-controlled triaxial tests. The testing procedures after the consolidation stage for 

the specimens that were conditioned to a target temperature and for those subjected to 

freeze-thaw-cycles are discussed in the following section.    

Table 3.3  Cyclic strain-controlled tests on unfrozen Mabel Creek silt specimens 

Test 

No.* 

Post-consolidation 

void ratio 

Effective 

confining 

pressure, kPa 

B-value at 

the end of 

saturation 

Cyclic shear 

strain,% 

(e) (σ'3) (B) (γ) 

U1 1.052 102 0.98 0.005 

U2 1.052 101 0.98 0.010 

U3 1.052 101 0.98 0.030 

U4 1.055 101 0.96 0.050 

U5 1.052 103 0.97 0.100 

U6 1.056 101 0.97 0.300 

U7 1.050 101 0.95 

 

 

0.800 

Note:   U: Unfrozen silt specimen 
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Table 3.4  Cyclic strain-controlled tests on Mabel Creek silt specimens conditioned to 

a target temperature  

Test 

No.* 

Post-consolidation 

void ratio 

Effective 

confining 

pressure, kPa 

B-value at 

the end of 

saturation 

Cyclic shear 

strain,% 

(e) (σ'3) (B) (γ) 

F2401 

 

1.052 98 0.97 0.005 

F2402 

 

1.052 98 0.97 0.100 

F2403 

 

1.041 98 0.97 0.300 

F2404 

 

1.038 101 0.98 0.800 

F501 

 

1.056 107 0.98 0.005 

F502 

 

1.056 107 0.98 0.100 

F503 

 

1.051 100 0.98 0.300 

F101 

 

1.056 100 0.98 0.005 

F102 

 

1.056 100 0.98 0.100 

F103 

 

1.066 108 0.98 0.300 

F051 

 

1.046 102 0.96 0.005 

F052 

 

1.046 101 0.96 0.100 

F053 

 

1.052 100 0.95 0.300 

FN021 

 

1.051 106 0.98 0.030 

FN022 

 

1.051 97 0.97 

 

 

0.100 

Note:   F240: Specimen conditioning at 24.0ºC 

  F50: Specimen conditioning at 5.0ºC 

  F10: Specimen conditioning at 1.0ºC 

  F05: Specimen conditioning at 0.5ºC  

  FN02: Specimen conditioning at -0.2ºC 
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Table 3.5  Cyclic strain-controlled tests on Mabel Creek silt specimens subjected to 

freeze-thaw cycles 

Test 

No.* 

Post-consolidation 

void ratio 

Effective 

confining 

pressure, kPa 

B-value at 

the end of 

saturation 

Cyclic shear 

strain,% 

(e) (σ'3) (B) (γ) 

FT201 

 

1.050 103 0.97 0.010 

FT202 

 

1.045 101 0.98 0.100 

FT203 

 

1.050 102 0.97 0.300 

FT204 

 

1.044 101 0.96 0.800 

FT401 

 

1.046 101 0.98 0.005 

FT402 

 

1.043 103 0.97 0.100 

FT403 

 

1.046 101 0.98 0.300 

FT404 

 

1.039 102 0.99 0.800 

Note:   FT20: Specimen experienced 2 freeze-thaw cycles 

  FT40: Specimen experienced 4 freeze-thaw cycles 

 

Table 3.6  Cyclic strain-controlled tests on Mabel Creek silt specimens subjected to 

freeze-thaw cycles 

Test 

No.* 

Post-consolidation 

void ratio 

Effective 

confining 

pressure, kPa 

B-value at 

the end of 

saturation 

Cyclic shear 

strain,% 

(e) (σ'3) (B) (γ) 

F05P21 

 

1.051 100 0.97 0.005 

F05P22 

 

1.051 100 0.97 0.300 

F05P23 

 

1.038 101 0.98 0.800 

F05P31 

 

1.053 101 0.98 0.005 

F05P32 

 

1.053 101 0.98 0.300 

F05P33 

 

1.060 101 0.98 0.800 

FN02P21 

 

1.046 101 0.95 0.050 

FN02P22 

 

1.061 102 0.96 0.100 

FN02P31 

 

1.069 101 0.98 0.050 

FN02P32 

 

1.061 102 0.96 0.100 

Note:   F05P22: Specimen at 0.5ºC by Path 2   

  F05P23: Specimen at 0.5ºC by Path 3 

    FN02P22: Specimen at -0.2ºC by Path 2   

  FN02P23: Specimen at -0.2ºC by Path 3 
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3.2.3 Specimen thermal conditioning  

As discussed earlier, two series of tests were performed. In the first series of tests, 

where the impact of various ground temperatures was the subject of investigation, 

each soil specimen was first brought to the frozen state and then conditioned to a 

target temperature. For the second series of specimens, where the impact of 

freeze-thaw cycles on cyclic resistance and dynamic characteristics was the subject of 

investigation, soil specimen conditioning was achieved by a target number of 

freeze-thaw cycles. The details for each of these conditioning are outlined below.  

3.2.3.1 Thermal conditioning at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC 

After consolidation, each specimen was frozen multiaxially under drained conditions 

at a confining effective pressure of approxiately100 kPa. During the freezing process, 

chilled coolant at -25ºC was circulated through the top cap and the brass coiling 

around the specimen. The change in temperature around the specimen was 

continuously monitored using thermistors, as shown in Figure 3.9. It took about 20 to 

24 hours to reach a stable condition at about -10ºC, which was selected as a target 

freezing temperature to ensure a fully frozen state. Once the frozen state was achieved, 

the specimen was conditioned back to a target temperature (e.g., 24ºC, 5ºC, 1ºC, 0.5ºC, 

and -0.2ºC). During thermal conditioning, the change in the height of the specimen 

was also monitored and recorded, as shown in Figure 3.9. Conditioning was complete 

when the target temperature was obtained and no further change in height was 

observed.   An acceptable target temperature existed when the thermistor readings 

were stable.   

3.2.3.2 Thermal conditioning through freeze-thaw cycles 

The conditioning of the specimens in this series was achieved through a similar 

procedure to the one outlined above. The only difference was that after the 
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fully-frozen state was achieved at -10ºC, the thawing process was initiated by 

exposing the triaxial cell to room temperature. In this series of tests, the soil 

specimens were subjected to 1, 2, or 4 freeze-thaw cycles. Since 1 to 2 conditioning 

freeze-thaw cycles were found to cause only a slight change in pore water pressure 

generation, 3 freeze-thaw cycle conditioning was skipped. After the conditioning of 2 

freeze-thaw cycles, a 4 freeze-thaw cycle conditioning was conducted for the purpose 

of observing the apparent difference in pore water pressure generation in specimens 

conditioned at additional freeze-thaw cycles. Typical thermistor records of specimens 

subjected to freeze-thaw cycles are presented in Figure 3.10. It should be noted that 

the record for 1 freeze-thaw cycle is identical to that of the specimen conditioned at 

24ºC in the first series of tests (Figure 3.9a). 

 

  

Figure 3.9  Typical thermistor records and vertical displacements during specimen 

conditioning at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC 



 

 

 34 

 

Figure 3.9  Typical thermistor records and vertical displacements during specimen 

conditioning at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC 
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Figure 3.10  Typical thermistor records and vertical displacements from specimens 

subjected to freeze-thaw cycles 
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3.2.3.3 Thermal conditioning at 0.5ºC, and -0.2ºC though three different paths  

To investigate if thermal conditioning paths affect dynamic response of Mabel Creek 

silt, the target near-freezing temperatures of 0.5ºC and -0.2ºC were reached by three 

different paths. All these thermal conditionings were started after consolidation. These 

thermal conditioning paths are displayed below: 

The target temperature of -0.2ºC:  

Path 1: The consolidated silt specimen  -10ºC for about 24 hrs  -1.2ºC for about 

24 hrs  -0.2ºC for about 48 hrs  strain-controlled cyclic tests;  

Path 2: The consolidated silt specimen  -10ºC for about 24 hrs  -0.2ºC for about 

6-7 days  strain-controlled cyclic tests;  

Path 3: The consolidated silt specimen  -0.2ºC for about 48 hrs  strain-controlled 

cyclic tests. 

The target temperature of 0.5ºC:  

Path 1: The consolidated silt specimen  -10ºC for about 24 hrs  -0.5ºC for about 

24 hrs  0.5ºC for about 48 hrs  strain-controlled cyclic tests;  

Path 2: The consolidated silt specimen  -10ºC for about 24 hrs  0.5ºC for about 

6-7 days  strain-controlled cyclic tests;  

Path 3: The consolidated silt specimen  0.5ºC for about 48 hrs  strain-controlled 

cyclic tests.  

Typical thermistor records from specimens at -0.2ºC and 0.5ºC through different 

thermal conditioning paths are presented in Figure 3.11. Thermal Conditioning Path 1 

for -0.2ºC and 0.5ºC is shown in Figure 3.9d and Figure 3.9e.   
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Figure 3.11  Typical thermistor records and vertical displacements during specimens 

conditioning at 0.5ºC and -0.2ºC through different paths 

 

 

3.2.4 Cyclic triaxial strain-controlled test  

Following thermal conditioning, the triaxial test chamber drainage valves were closed 

and a cyclic loading test was started. Sinusoidal strain amplitudes were applied at 0.1 

Hz frequency, and the pore pressure response was monitored. The experiment was 

continued for 50 loading cycles or until an excess pore pressure ratio of 0.90 or higher 

was obtained. 

Using elasticity theory and a Poison’s ratio of 0.5 for undrained conditions (Ishihara 
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1996) the induced shear strains were calculated by the following equation: 

   max,5.1 a 
             (3.1) 

where:     = cyclic shear strain; 

   m a x,a  = the peak axial strain. 

A typical result from a strain-controlled test is shown in Figure 3.12. A specimen of 

Mabel Creek silt was subjected to a constant shear strain amplitude of 0.3% (Figure 

3.12a). Excess pore pressure was generated with increasing loading cycles (Figure 

3.12b). The sinusoidal peak shear stress decreased with increasing loading cycles 

(Figure 3.12c). Shear stress-shear strain curves shown in Figure 3.12d reflect that the 

specimen became softer and softer with increasing loading cycles.  
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Figure 3.12  Typical result from a cyclic strain-controlled test on Mabel Creek silt 

specimen conditioned at 0.5ºC with σ’3=100 kPa, γ=0.3% and 

post-consolidation void ratio of 1.046 

3.2.5 Dissipation of excess pore pressure and post testing measurements 

Dissipation of excess pore pressure through drainage was allowed after completion of 
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the test. The change in volume due to pore pressure dissipation was measured using a 

volume change transducer connected to the specimen. The vertical displacement was 

also monitored and recorded.  

3.3 Data reduction  

Processing of the experimental raw data was conducted as follows: 

Excess pore water pressure generation in soils is typically defined by the excess pore 

water pressure ratio, ru, which is given by the following equation:  

 

         ru=Δu/σ’3               (3.2) 

 

where    

Δu = excess pore pressure at the end of loading cycle, sometimes referred to as cycle 

end pore pressure; and 

σ’3 = the initial effective confining pressure. 

 

Figure 3.13. shows a typical record of excess pore pressure generation versus number 

of loading cycles for induced shear strain levels of 0.1% (Fig. 3.12a) and 0.8% (Fig. 

3.12b). Excess pore pressure generation in cyclic testing follows a pattern similar to 

that of loading (e.g., sinusoidal in this case). Although excess pore pressure ratio can 

be calculated at any time during a loading cycle, the value that is commonly used is 

defined by taking into account the excess pore pressure at the end of loading cycle. 

The dotted line in Fig. 3.12 represents such excess pore pressure values, and all of the 

values of excess pore pressure ratio throughout this document are evaluated based on 

cycle end measurements.   

Experimental results were also used to compute the shear modulus and damping ratio, 
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which are the two commonly used dynamic properties for soils. This was done by 

evaluating certain characteristics of the hysteresis loops formed during cyclic testing 

as shown in Figure 3.14. The inclination of the loop may be used to compute the 

Young’s Modulus (E) using Equation 3.3. The shear modulus is then calculated 

through Equation 3.4 assuming a typical Poisson’s ratio of 0.5 for saturated undrained 

soils.   

         E =σdmax/εmax      (3.3) 

Further,      γ = (1 +ν) ε and G = E/2/(1 +ν)    (3.4) 

 

where     

  σdmax = the maximum deviator stress as shown in Figure 3.14;  

 εmax = the maximum axial strain as shown in Figure 3.14;  

 G = the shear modulus; 

 γ = the shear strain; and 

 ν  = the Poisson’s ratio that may be taken as 0.5 for saturated undrained 

specimens. 

 

For the damping ratio, the energy dissipated during each loading cycle and strain 

energy is evaluated from the hysteresis loop. The area enclosed by the loop defines 

the energy dissipation and the area of the triangle gives the elastic strain energy. The 

damping ratio is then computed using Equation 3.5.   

 

       D=ALOOP/(4πATRIANGLE)      (3.5) 

 

where   

   ALOOP = area enclosed by the hysteresis loop and the energy dissipation per 

cycle as shown in Figure 3.14; 

  ATRIANGLE = area of the shaded triangle and the maximum strain energy as shown in 



 

 

 40 

Figure 3.14. 

 

 

Figure 3.13  Typical pore water pressure generation under cyclic loading in Mabel 

Creek silt subjected to 2 freeze-thaw cycles (a) γ=0.1%, σ’3=101 kPa, and 

e=1.045 (b) γ=0.8%, σ’3=101 kPa, and e=1.044 
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Figure 3.14  Hysteretic stress–strain relationship for cyclic loading (after Vinson 1978) 
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4 Impact of Temperature and Freeze-Thaw Cycles on Excess Pore 

Pressure Generation in Mabel Creek Silt 

4.1 Introduction 

Two groups of undrained cyclic triaxial strain-controlled tests were conducted on 

reconstituted Mabel Creek silt specimens. The tests in the first series were performed 

on specimens conditioned at the following temperatures: 24ºC, 5ºC, 1ºC, 0.5ºC, and 

-0.2ºC. The second series of tests were performed on specimens subjected to various 

freeze-thaw cycles. The unfrozen specimens refer to the specimens without any 

freezing or thawing treatments. The results from the unfrozen specimen were 

considered as a baseline in this study. Results from each of these testing series are 

presented and discussed in the following sections.  

4.2 Excess pore water pressure generation at various temperatures 

Figure 4.1 shows the pore water pressure generation in unfrozen specimens for 

various induced shear strain levels in terms of excess pore pressure ratio, ru, versus 

number of loading cycles, N, which is defined as pore pressure history (Hazirbaba 

2005). This case represents a moderate (i.e., unfrozen) ground condition. The induced 

shear strain level ranged between 0.005% and 0.8%. Figure 4.1a summarizes the 

results for the small shear strain levels of 0.005%, 0.01%, and 0.03%. At the smallest 

induced shear strain level of 0.005%, no excess pore pressure was developed. For the 

cyclic shear strain of 0.01%, very little excess pore pressure was developed. Excess 

pore pressure ratio was found to be about 0.6% at N=10, and it remained under 2% 

throughout the test (i. e., 50 loading cycles). This finding is important in terms of 

defining the threshold shear strain level (γt) (Dobry et al. 1982), below which no 

volume change under drained condition and little to no excess pore pressure under 

undrained condition occurs during cyclic loading. Typical values of γt are 0.01% to 
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0.015% for sands and 0.024% to 0.06% for cohesive soils (Hsu and Vucetic 2006). 

The fact that minimal excess pore pressure was developed at the 0.01% induced shear 

strain in an unfrozen specimen indicates a threshold shear strain level larger than 

0.01%. This is in agreement with the findings of Hsu and Vucetic (2006). Thus, the 

threshold cyclic shear strain for unfrozen specimens should be slightly larger than 

0.01%. For γ=0.05%, the excess pore pressure ratio at N=10 is 12%, with a maximum 

value of 23% obtained at N=50. At higher levels of induced cyclic shear strain, larger 

pore pressure values were obtained. For γ=0.8%, ru was 25% for N=1 and increased to 

about 93% at the end of the test (N=50) (Figure 4.1b).  

 

 

Figure 4.1  Excess pore pressure ratio (ru) versus N in unfrozen Mabel Creek silt
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The excess pore water pressure generation in unfrozen specimens is also presented 

versus induced cyclic shear strain for different number of loading cycles in Figure 4.2. 

The existence of the threshold shear strain level can be better seen from these curves. 

At and around γ=0.01%, no significant pore pressure was developed for 50 loading 

cycles as discussed earlier. Figure 4.2 shows the strong relationship between excess 

pore pressure and induced cyclic shear strain.  

Excess pore pressure generation measured from specimens conditioned at 24ºC (i.e., 

thawed back to 24ºC from fully-frozen state) is presented in Figure 4.3. The smallest 

induced shear strain level in this case was γ=0.005%. At this strain level, no 

appreciable pore pressure generation was recorded. For γ=0.1%, the excess pore 

pressure ratio increased from 2% at N=1 to 15% at N=10 and to 26% at N=50. The 

results from γ=0.005% to γ=0.1% indicate that the threshold shear strain for 

specimens conditioned at 24ºC should be somewhere between these two shear strain 

levels. Excess pore pressure ratio at γ=0.3% was found to be about 10% at N=1, 39% 

at N=10 and 61% at N=50. For γ=0.8%, ru was 29% at N=1, and it increased 

progressively to 65% at N=10 and to 87% at N=50.   

 

Figure 4.2  Excess pore pressure ratio (ru) versus cyclic shear strain in unfrozen 

Mabel Creek silt  



 

 

 45 

 

 

 

Figure 4.3 Excess pore pressure ratio (ru) versus N in Mabel Creek silt conditioned at 

24ºC 

 

Figure 4.4 shows the pore pressure generation curves for the specimens conditioned at 

24ºC. A trend very similar to that of the unfrozen specimens (Figure 4.2) was 

revealed.  

Figure 4.5 displays the pore water pressure generation from specimens conditioned at 

5ºC. In this case, the induced cyclic shear strain levels were 0.005%, 0.1%, and 0.3%. 

For the small cyclic shear strain of 0.005%, ru remained under 1% throughout the test. 

For γ=0.1%, ru increased progressively from about 1% at N=1, to 14% at N=10, and 

to about 26% at N=50. Excess pore pressure ratio for γ=0.3% are 9% at N=1, 37% at 

N=10, and approximately 60% at N=50.  

The pore pressure generation curve for the specimens conditioned at 5ºC is presented 

in Figure 4.6. As can be seen, no change in excess pore pressure ratio was seen at 

γ=0.005%. The fact that the threshold shear strain level is larger than γ=0.005% is 
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confirmed. As the induced cyclic shear strain level increased, so did the generation of 

excess pore water pressure.  

 

Figure 4.4  Excess pore pressure ratio versus cyclic shear strain in Mabel Creek silt 

conditioned at 24ºC 

 

 

 

Figure 4.5  Excess pore pressure ratio (ru) versus N in Mabel Creek silt conditioned at 

5ºC 
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Figure 4.6  Excess pore pressure ratio (ru) versus cyclic shear strain on Mabel Creek 

silt conditioned at 5ºC 

 

Figure 4.7 shows the pore water pressure history from soil specimens conditioned at 

1ºC. The induced cyclic shear strain levels are 0.005%, 0.1%, and 0.3%. For 

γ=0.005%, the maximum value of excess pore pressure ratio is 0.3% at N=50. Thus 

γ=0.005% may be considered less than the cyclic threshold shear strain for specimens 

conditioned at 1ºC. For γ=0.1%, the excess pore water pressure ratio increased 

progressively from 5% at N=1, to 18% at N=10, and to 30% at N=50. Larger excess 

pore water pressure was obtained at γ=0.3% with ru of 5% at N=1, 30% at N=10, and 

50% at N=50. 

Figure 4.8 presents the pore pressure generation curve for specimens conditioned at 

1ºC.  

Test results of the excess pore water pressure generation from specimens conditioned 

at 0.5ºC are presented in Figure 4.9 and Figure 4.10. Similar to previous recordings at 

various temperatures, no significant ru (<1.5%) was recorded at γ=0.005%. For 

γ=0.1%, measured ru values were 5% at N=1, 26% at N=10 and 42% at N=50. Finally, 
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for γ=0.3%, significant excess pore pressure was developed immediately after the first 

cycle and accumulated throughout the test. Excess pore pressure ratio were measured 

as 20% at N=1, 58% at N=10, and 83% at N=50. The excess pore pressure generation 

curves obtained from the specimens conditioned at 0.5ºC are shown in Figure 4.10. 

 

Figure 4.7  Excess pore pressure ratio (ru) versus N on Mabel Creek silt conditioned 

at 1ºC 

 

Figure 4.8  Excess pore pressure ratio versus cyclic shear strain on Mabel Creek silt 

conditioned at 1ºC 
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Figure 4.9  Excess pore pressure ratio (ru) versus N on Mabel Creek silt conditioned 

at 0.5ºC 

 

 

Figure 4.10  Excess pore pressure ratio versus cyclic shear strain on Mabel Creek silt 

conditioned at 0.5ºC 

 

Excess pore water pressure histories from the specimens conditioned at -0.2ºC are 

presented in Figure 4.11. The induced shear strain levels were 0.03% and 0.1%. The 

specimens in this case displayed completely different behavior from those conditioned 

at warmer temperatures. For γ=0.03%, the excess pore water pressure increased 
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slightly and remained under 4% throughout the test. However, interestingly, at 

γ=0.1% the excess pore pressure ratio showed a decreasing trend with increasing 

number of loading cycles, and eventually negative pore pressure was recorded as 

-7.5% at N=50. It has already been established that near or below 0
o
C a portion of the 

pore water is still at unfrozen state (Neresova and Tsytovich 1963) and that the 

interaction between unfrozen and frozen pore water contents during freezing may lead 

to development of negative pore pressure (Eigenbrod et al. 1996). Thus, although the 

test at =0.1% on the specimen conditioned to -0.2
o
C was executed at the equilibrium 

condition, development of the negative excess pore pressure with cyclic loading may 

be attributed to the redistribution of the unfrozen pore water within the specimen. It 

may be argued that at smaller induced shear strain levels, as observed in the case of 

=0.03%, such redistribution of the unfrozen water does not occur and therefore the 

temperature equilibrium condition is sustained indicating no negative excess pore 

pressure development within the specimen.       

 

 

Figure 4.11  Excess pore pressure ratio (ru) versus N on Mabel Creek silt conditioned 

at -0.2ºC 
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4.3 Impact of temperature on excess pore water pressure generation  

The impact of temperature on excess pore water pressure generation is analyzed using 

the results presented above. The analysis in this section focuses mainly on comparing 

the trends from each of the ground temperatures investigated.  

Figure 4.12 displays a comparison of the results from specimens conditioned at 

different temperature and subjected to γ=0.1%. It is interesting to note that the excess 

pore pressure values obtained from specimens conditioned at 5ºC and 24ºC were 

almost identical for all loading cycles, and that these values appear to form the lower 

bound of pore pressure history at γ=0.1%. The largest pore pressure values, indicating 

the upper bound in Figure 4.12, were obtained from the specimen conditioned at 

0.5ºC. The unfrozen specimen experienced less pore pressure generation than that of 

the specimen conditioned at 0.5ºC and more than those conditioned at 1ºC, 5ºC, and 

24ºC. As discussed in the previous section, the excess pore pressure in the specimen 

conditioned at -0.2
o
C followed a different pattern with negative values even after 

N=13.   

Figure 4.13 shows trends of excess pore pressure generation similar to those presented 

in Figure 4.12 for γ=0.3%. The upper bound for this strain level is also from the 

specimen conditioned at 0.5ºC. However, the lower bound pore pressure generation 

history was conditioned at 1ºC.  
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Figure 4.12  Temperature rise effect on pore water pressure generation of frozen or 

partially frozen Mabel Creek silt at γ=0.1% 

 

 

 

Figure 4.13  Temperature rise effect on pore water pressure generation of frozen or 

partially frozen Mabel Creek silt at γ=0.3% 

 

The variation of excess pore pressure with temperature for γ= 0.1% and γ= 0.3% is 

shown in Figure 4.14 and Figure 4.15, respectively.  The excess pore pressure 

generation appears to remain constant between 24
o
C and 1

o
C. Significant increase 

occurs at 0.5
o
C. The results also indicated that pore pressure generation in unfrozen 
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specimens was always larger than that of conditioned specimens with the exception of 

those conditioned at 0.5ºC. 

 

Figure 4.14  Excess pore water pressure ratio versus temperature at γ=0.1% 

 

 

Figure 4.15  Excess pore water pressure ratio versus temperature at γ=0.3% 

The pore water pressure generation curves from all of the specimens tested under this 

category are presented in Figure 4.16. As in the excess pore pressure histories, the 

specimens conditioned at 0.5ºC are found to form the upper bound curve.  



 

 

 54 

 

Figure 4.16  Pore water pressure generation curves of Mabel Creek silt conditioned at 

different temperature and N=10 

 

4.4 Comparison of results with previous research efforts  

As discussed in Chapter 2, previous efforts generally focused on moderate ground 

conditions. To investigate pore pressure generation curves in Mabel Creek silt 

conditioned at various ground temperatures, the results from previous literature were 

combined into the results in this study, and a comparison was made for N=10 as 

shown in Figure 4.17. Dobry (1985) provided the bound of pore pressure generation 

in clean sand with a Dr from 20% to 80% and a confining pressure from 25 kPa to 

200 kPa. Hazirbaba (2005) conducted a series of undrained strain-controlled cyclic 

triaxial tests on sand with 0-20% fines, and in Figure 4.17 these results form a band 

for pore pressure generation of sand with fines. Significantly, the pore pressure 

generation in Mabel Creek silt conditioned at various temperatures is within the band 

of clean sand with 0-20% fines from Hazirbaba (2005), and is equal to or below the 

lower bound of the band of sand from Dobry (1985). This means that the Mabel Creek 

silt, regardless of the conditioned temperatures, has lower liquefaction potential than 

clean sand, but similar liquefaction potential to sand with 0-20% fines.  The pore 

pressure generation at N=10 in Mabel Creek silt conditioned at various temperatures 
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is bounded as shown in Figure 4.18. 

 

Figure 4.17  Comparison of pore pressure generation among Mabel Creek silt 

conditioned at various temperatures, clean sand and sand with fines  

 

 

Figure 4.18  The bound of pore pressure generation in Mabel Creek silt conditioned at 

various temperatures 
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4.5 Pore water pressure generation at freeze-thaw cycles 

Since a specimen conditioned at 24ºC is identical to a specimen conditioned at 1 

freeze-thaw cycle as mentioned in Section 3.2.3, the pore water pressure generation at 

1 freeze-thaw cycle has been introduced in Section 4.2. Thus, pore pressure 

generation in specimens at freeze-thaw cycles is started at 2 freeze-thaw cycles. Pore 

pressure generation history in specimens conditioned at 2 freeze-thaw cycles is 

presented in Figure 4.19. For the smallest cyclic shear strain level of 0.01%, no 

significant ru was measured, and ru was always under 1.1% during 50 loading cycles. 

The excess pore water pressure ratio at γ=0.1% is generated in a progressive manner 

from 6% at N=1, to 19% at N=10, to 29% at N=50. Similarly increasing, ru at γ=0.3% 

was found to be from 16% at N=1 and 43% at N=10 to 61% at N=50. For γ=0.8%, ru 

was measured to be 19% at N=1, 59% at N=10 and 81% at N=50.  

 

 

Figure 4.19  Excess pore pressure ratio (ru) versus N on Mabel Creek silt conditioned 

after 2 freeze-thaw cycles 

Figure 4.20 presents the pore pressure generation curves in specimens conditioned at 

2 freeze-thaw cycles. No significant pore generation at a shear strain of 0.01% 
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suggests that the threshold shear strain is greater than 0.01%. As expected, larger 

shear strains induce more pore water pressure ratio. 

 

Figure 4.20  Excess pore pressure ratio versus cyclic shear strain on Mabel Creek silt 

conditioned after 2 freeze-thaw cycles 

 

 

Excess pore water pressure generation as the function of the number of loading cycles 

on specimens conditioned after 4 freeze-thaw cycles is presented in Figure 4.21. For 

the smallest cyclic shear strain level of 0.005%, ru of less than 1% was generated 

during all cyclic loading tests. For γ=0.1%, ru went from 6% at N=1, to 18% at N=10, 

and to 27% at N=50. In the same manner, ru at γ=0.3% ranged from 16% at N=1, to 

40% at N=10, and to 57% at N=50. For the specimen at γ=0.8%, ru jumped to 26% at 

N=1 and was measured to be 58% at N=10 and 78% at N=50. The generation curves 

of the water pressure ratio in specimens conditioned at 4 freeze-thaw cycles are 

presented in Figure 4.22. As a shear strain level close to and less than the threshold 

shear strain from these excess pore water pressure generation curves, 0.005% is 

suggested. 
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Figure 4.21  Excess pore pressure ratio (ru) versus N on Mabel Creek silt conditioned 

after 4 freeze-thaw cycles 

 

 

Figure 4.22  Excess pore pressure versus cyclic shear strain on Mabel Creek silt 

conditioned after 4 freeze-thaw cycles 

 

4.6 Impact of freeze-thaw cycles on pore water pressure generation of Mabel 

Creek silt 

To compare the effect of freeze-thaw cycles on pore water pressure generation of 
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Mabel Creek silt, the excess pore pressure generation histories in specimens 

conditioned through 1, 2, and 4 freeze-thaw cycles and the unfrozen specimens were 

plotted at the shear strain of 0.1%, 0.3%, and 0.8%. The comparison of pore water 

pressure generations on specimens conditioned at different freeze-thaw cycles and the 

shear strain level of 0.1% is shown in Figure 4.23. Excess pore pressure ratio of the 

specimen treated after 1 freeze-thaw cycle was made up of a lower bound in 

comparison with other specimens at the end of the first loading cycle. No doubt, pore 

pressure generation in the unfrozen specimen formed an upper bound. This band 

width increases with increasing loading cycles. Both specimens, the one treated after 

2 freeze-thaw cycles and the one treated 4 freeze-thaw cycles, behaved with almost 

the exact same pore water pressure generation through all 50 loading cycles. The 

difference of ru among these three specimens at 1, 2, and 4 freeze-thaw cycles became 

smaller and smaller with increasing loading cycles, and ended at only 2% after the 

50
th

 loading cycle.  

Similar, the comparison of pore water pressure generations in specimens conditioned 

at different freeze-thaw cycles and the shear strain level of 0.3% is shown in Figure 

4.24. Excess pore pressure ratio of the specimens treated after 1, 2, and 4 freeze-thaw 

cycles was generated at the narrow band with increasing loading cycles. The 

difference of ru among these three specimens was remained in the range of 5% 

through all 50 loading cycles. The unfrozen specimen began with initial excess pore 

water pressure ratio at 12%, which was slightly less than those of the specimens 

respectively treated after 2 and 4 freeze-thaw cycles. However, ru of the unfrozen 

specimen was quickly beyond those of other specimens after N=3 due to a very high 

pore water pressure generation slope. Thus the unfrozen specimen had the highest 

pore water pressure generation when γ=0.3%. 
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Figure 4.23  Comparison of the pore water pressure generation in Mabel Creek silt 

conditioned at different freeze-thaw cycles at γ=0.1% 

 

 

Figure 4.24  Comparison of the pore water pressure generation in Mabel Creek silt 

conditioned at different freeze-thaw cycles at γ=0.3% 

 

The comparison of pore water pressure generation on specimens conditioned at the 

different freeze-thaw cycles and the shear strain level of 0.8% is shown in Figure 4.25. 

The unfrozen specimen still forms the upper bound. Pore water pressure generation on 

the specimens treated after 2 and 4 freeze-thaw cycles showed nearly the same 
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behavior and forms the lower bound.  The specimen treated after only 1 freeze-thaw 

cycle had higher excess pore water pressure generation than the specimens treated 

after 2 and 4 freeze-thaw cycles. The difference of ru between the specimen treated 

after 1 freeze-thaw cycle and the specimens treated after 2 and 4 freeze-thaw cycles 

remained at 9 % through all 50 loading cycles.  

 

Figure 4.25  Comparison of the pore water pressure generation on Mabel Creek silt 

conditioned at different freeze-thaw cycles at γ=0.8% 

 

To investigate the effect of freeze-thaw cycles on pore water pressure generation of 

Mabel Creek silt, the excess pore water pressure ratios are summarized in terms of 

number of freeze-thaw cycles, as shown in Figure 4.26~Figure 4.28 at the constant 

shear strain level of 0.1%, 0.3%, and 0.8%, respectively. In Figure 4.26, the excess 

pore water pressure ratio of a specimen at γ=0.1% decreases from the unfrozen state 

to 1 freeze-thaw cycle, slightly increases from 1 to 2 freeze-thaw cycles, and then 

decreases from 2 to 4 freeze-thaw cycles. A similar trend of excess pore water 

pressure ratio for the specimen at γ=0.3% is shown in Figure 4.27. However, for the 

largest shear strain of 0.8%, the excess pore water pressure ratio decreases with 

increasing number of freeze-thaw cycles without any fluctuation. 
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Figure 4.26  Excess pore water pressure versus the number of freeze-thaw cycles on 

Mabel Creek silt conditioned at γ=0.1% 

 

 

Figure 4.27  Excess pore water pressure versus the number of freeze-thaw cycles on 

Mabel Creek silt conditioned at γ=0.3% 
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Figure 4.28  Excess pore water pressure versus the number of freeze-thaw cycles on 

Mabel Creek silt conditioned at γ=0.8% 

 

The impact of freeze-thaw cycles is compared in the pore water pressure generation 

curves of specimens conditioned at different numbers of freeze-thaw cycles at N=10 

presented in Figure 4.29. The unfrozen specimens had higher pore pressure generation 

than the other specimens conditioned by freeze-thaw cycles. The pore water pressure 

generation curves of the specimens experiencing 2 and 4 freeze-thaw cycles 

intersected in the narrowed band; however, the pore water pressure generation curves 

of the specimens that experienced 2 freeze-thaw cycles slightly passed over the curve 

of the specimens experiencing 4 freeze-thaw cycles with the ru of less than 2%. Thus, 

it may be concluded that pore water pressure generation of specimens conditioned at 2 

freeze-thaw cycles is similar to or even slightly higher than that of specimens 

conditioned at 4 freeze-thaw cycles. Excess pore pressure ratio of the specimen 

conditioned at only 1 freeze-thaw cycle was lower than that of the specimen 

experiencing 2 freeze-thaw cycles at γ=0.1% and γ=0.3%; however, the situation was 

reversed at γ=0.8%. 
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Figure 4.29  Pore water pressure generation curves of Mabel Creek silt conditioned at 

different number of freeze-thaw cycles at N=10 

 

4.7 Discussion of pore water pressure generation at freeze-thaw cycles 

To investigate pore pressure generation curves in Mabel Creek silt conditioned at 

various freeze-thaw cycles, as in Section 4.4, pore water pressure generation 

boundaries from Dobry (1985) and Hazirbaba (2005) are introduced into the results in 

this study for comparison. This comparison is presented in Figure 4.30. The pore 

pressure generation in Mabel Creek silt conditioned at various freeze-thaw cycles is in 

the middle of curves for sand with 0-20% fines from Hazirbaba (2005), but under the 

lower bound of clean sand from Dobry (1985). Pore pressure generation at N=10 in 

Mabel Creek silt conditioned at various temperatures is bounded as shown in Figure 

4.31. 
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Figure 4.30  Comparison of pore pressure generation among Mabel Creek silt 

conditioned at various freeze-thaw cycles, clean sand and sand with fines 

 

 

Figure 4.31  Bound of pore pressure generation in Mabel Creek silt conditioned at 

various freeze-thaw cycles 
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4.8 Prediction of pore water pressure generation of Mabel Creek silt 

An understanding of how pore water pressure in soils generates during cyclic loadings 

provides a basis for estimating pore water pressure distribution in soils after the 

occurrence of seismic loadings, further variations of soil strength, and even settlement 

after seismic loadings. The modeling of pore water pressure generation caused by 

seismic loadings has been studied for many years. Basically, there are two approaches 

to the modeling of pore pressure generation caused by cyclic loadings. The first 

approach of modeling is based on a fundamental understanding of the liquefaction 

phenomenon. The approach takes advantage of the characteristics of rebounding and 

stress-strain curves in soils to express the generation of pore water pressure in soils 

subjected to earthquakes (Anandarajah 1994; Desai 2000; Dafalias and Manzari 2004). 

However, the accuracy of this kind of approach is limited by the soil stress-strain 

model and soil characteristic, which are attained by extra laboratory tests. The second 

approach makes use of results obtained from cyclic laboratory tests to build empirical 

or semi-empirical models of pore water pressure generation. These empirical or 

semi-empirical models generally required fewer soil characteristics, thus they display 

relatively easier application (Seed et al. 1976; Matasovic and Vucetic 1995; Talaganov 

1996; Liyanathirana and Poulos 2002).  

To describe the generation of pore water pressure in soils during cyclic loadings, 

Green et al. (2000) provided an empirical mode, the GMP model to estimate the pore 

water pressure developing with cyclic loadings. Unlike the models of Seed et al. 

(1976), Matasovic and Vucetic (1995), Talaganov (1996), and Liyanathirana and 

Poulos (2002), the number of loading cycles for initial liquefaction (Nl) may be 

uncertain for the GMP model. This is very applicable to the generation of pore water 

pressure for Mabel Creek silt under the undrained cyclic strain-controlled loadings in 

this study. The GMP model is an energy-based model developed to be applied on 

non-plastic silt-sand mixtures on temperate ground. In this study, the application of 
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the GMP model is extended to partially frozen specimens and specimens subjected to 

freeze-thaw cycles. The GMP model is expressed as follows: 

1 PECW
Sur /        (4.1)  

Where:   ru is the excess pore water pressure ratio at the end of loading cycles; 

   PEC is ―pseudoenergy capacity‖, a calibration parameter; and 

   Ws is the energy dissipated per unit volume of soil divided by the initial 

effect confining pressure.  

For undrained cyclic triaxial test loadings, Ws may be expressed as follows: 
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Where:   n is the number of load increments to liquefaction; 

   σd,i is applied deviator stress at load increment i; 

   εd,i is axial strain at load increment i; and 

   σ’o, is initial effective stress. 

In this study, the calibration parameter—PEC for specimens conditioned at different 

temperatures or freeze-thaw cycles may be found by method of the least squares from 

all tests results in the same thermal treatment condition. PEC for specimens 

conditioned at 24ºC, 5ºC, 1ºC, and 0.5ºC; specimens subjected to 2 and 4 freeze-thaw 

cycles; and unfrozen specimens is summarized in Table 4.1. The R
2
 values, from 

comparing the measured and predicted excess pore water pressure ratio according to 

the corresponding PEC, are also displayed in Table 4.1. It is obvious that the 

application of PEC in the GMP Model can attain the best fit for the test results. The R
2
 

value for the unfrozen silt specimen with γ=0.01% is found to be only 0.70, the other 

R
2
 values are always equal to or even greater than 0.95. The comparison of the 

predicted ru from the GMP model and the measured ru for specimens at each condition 

is presented in Figure 4.32~Figure 4.38. The maximum difference between predicted 

ru and measured ru occurred for the specimen conditioned at 0.5ºC with γ=0.1%. The 
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maximum value reached about 0.12. Other comparisons displayed less difference or 

even approximate superposition between predicted ru and measured ru. Thus, the GMP 

model attained the best fit for measured ru regardless of the thermal conditions of 

specimens. When the Mabel Creek silt’s stress-strain behavior is determined by a 

constitutive model or stress-strain tests, the GMP can provide a prediction of excess 

pore water pressure ratio according to the above-obtained PEC. 

Table 4.1  PEC for GMP model on Mabel Creek silt and corresponding R
2 

Mabel Creek silt specimen No. PEC 
R2 

γ=0.01% γ=0.03% γ=0.05% γ=0.1% γ=0.3% γ=0.8% 

Unfrozen silt specimen 0.058  0.71  0.95  0.99  0.99 0.97  0.97  

Specimen conditioning at 

24ºC/experiencing 1 freeze-thaw 

cycle 

0.100  -- -- -- 0.98  0.97 0.98  

Specimen conditioning at 5ºC 0.120  -- -- -- 0.98  0.97  -- 

Specimen conditioning at 1ºC 0.176  -- -- -- 0.98 0.97  -- 

Specimen conditioning at 0.5ºC 0.071  -- -- -- 0.96  0.96  -- 

Specimen experiencing 2 

freeze-thaw cycles 
0.122  -- -- -- 0.97  0.95  0.96  

Specimen experiencing 4 

freeze-thaw cycles 
0.147  -- -- -- 0.96  0.95  0.97  

 

Figure 4.32  The comparison of predicted ru from GMP model and measured ru on 

unfrozen Mabel Creek silt 
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Figure 4.33  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt conditioned at 24ºC or experiencing 1 freeze-thaw cycle 

 

 

Figure 4.34  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt conditioned at 5ºC 
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Figure 4.35  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt conditioned at 1ºC 

 

 

Figure 4.36  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt conditioned at 0.5ºC 
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Figure 4.37  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt experiencing 2 freeze-thaw cycles 

 

Figure 4.38  The comparison of predicted ru from GMP model and measured ru on 

Mabel Creek silt experiencing 4 freeze-thaw cycles 

 

The effect of temperature on partially frozen or thawed specimens was reflected on 

PEC as shown in Figure 4.39. The relationship between PEC and the conditioning 

temperature on partially frozen or thawed specimens is unclear. However, PEC was 

found to have a trend of increase with the number of freeze-thaw cycles on specimens 

as shown in Figure 4.40. 
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Figure 4.39  PEC versus the conditioning temperature on Mabel Creek silt 

 

Figure 4.40  PEC versus the number of freeze-thaw cycles on Mabel Creek silt 

 

4.9 Impact of thermal condition paths on pore pressure generation of Mabel 

Creek silt 

The same thermal conditioning target temperatures (i.e., 0.5ºC and -0.2ºC) may be 

reached by different paths. Different paths may cause different liquefaction potential 

at the specific target temperature. To confirm this assumption, pore pressure history 

and pore pressure generation curves are compared for specimens at the target 
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temperatures, but by three different conditioning paths. The near-freezing 

temperatures of 0.5ºC and -0.2ºC were chosen as target temperatures, because 0.5ºC 

and -0.2ºC are close to the freezing point and a change of thermal conditioning paths 

may cause different freezing and thawing.  

Figure 4.41 and Figure 4.42 shows an evaluation of thermal conditioning paths on the 

liquefaction potential of specimens at the target temperature of 0.5ºC. A large shear 

strain of γ=0.3% was chosen for evaluation. Thermal Conditioning Path 1 caused the 

largest excess pore pressure ratio at any given number of loading cycles, but longer 

conditioning time at 0.5ºC (Thermal Conditioning Path 2) decreased liquefaction 

potential. The lowest pore pressure generation occurred on thermal Conditioning Path 

3. A similar order of thermal conditioning path impact is reflected in pore pressure 

generation curves, as shown in Figure 4.42.  

 

Figure 4.41  Effect of thermal conditioning paths on pore water pressure history of 

Mabel Creek silt at target temperature of 0.5ºC and γ=0.3%  

 

Similarly, Figure 4.43 and Figure 4.44 show the influence of thermal conditioning 

paths on liquefaction potential of specimens at the target temperature of -0.2ºC. For 

γ=0.1%, Path 1 and Path 2 could not cause the excess pore pressure generation, even 
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more interestly, they cause negative pore pressure ratios, probably because most of the 

specimens conditioned by Path 1 or Path 2 were still in a frozen state. However, Path 

3 did not freeze the specimen completely, and therefore pore pressure generation was 

observed under cyclic loading. A similar thermal conditioning path influence is 

reflected in pore pressure generation curves, as shown in Figure 4.44. 

 

Figure 4.42  Effect of thermal conditioning paths on pore water pressure generation 

curve of Mabel Creek silt at target temperature of 0.5ºC 

 

Figure 4.43  Effect of thermal conditioning paths on pore water pressure history of 

Mabel Creek silt at target temperature of -0.2ºC and γ=0.1% 
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Figure 4.44  Effect of thermal conditioning paths on pore water pressure generation 

curve of Mabel Creek silt at target temperature of -0.2ºC 

 

4.10 Summary 

In this chapter pore water pressure generation of unfrozen specimens was displayed as 

a baseline to further study the effect of temperature rise and freeze-thaw cycles on 

pore water pressure generation. Pore water pressure generation of specimens 

conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC was analyzed. The pore water 

pressure generation of specimens experiencing 2 and 4 freeze-thaw cycles also was 

investigated. The influence of temperature and freeze-thaw cycles on pore water 

pressure generation was evaluated.  

During study of the temperature effect on pore water pressure of partially frozen or 

frozen specimens, the specimens thawed at 0.5ºC had the largest pore water pressure 

generation in comparison with unfrozen specimens and specimens thawed at 1ºC, 5ºC, 

and 24ºC. When the conditioning temperature was raised to 1ºC, 5ºC, or 24ºC, 

substantial decrease of pore water pressure generation was observed, and pore water 

pressure generation decreased to less than that of the unfrozen specimens. Similar 

pore water pressure generation was found on the specimens conditioned at 5ºC and 
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24ºC. No increase or a drop in pore water pressure was observed for specimens 

conditioned at -0.2ºC.  

During study of the freeze-thaw-cycles effect on pore water pressure of Mabel Creek 

silt, the freeze-thaw cycles strongly decreased pore water pressure generation for 

specimens. The main decrease of pore water pressure generation occurred only for 1 

freeze-thaw cycle. The decrease effect of further freeze-thaw on pore water pressure 

generation was obviously weakened with an increased number of freeze-thaw cycles. 

Almost no variation in pore water pressure generation was observed with increased 

number of freeze-thaw cycles from 2 to 4.  

By comparing pore pressure generation of Mabel Creek silt, clean sand, and sand with 

0-20% fines, pore pressure generation in Mabel Creek silt, regardless of conditioning 

temperature and number of freeze-thaw cycles, is only equivalent to that in sand with 

0-20% fines.  

The GMP model was provided to predict the pore pressure generation of Mabel Creek 

silt subjected to various thermal conditions (i.e., temperature treatment and number of 

freeze-thaw cycles) under undrained strain-controlled cyclic loadings. The test results 

were consistent with the results predicted by the GMP model. This indicates that the 

GMP model can be applicable to fine-grained soil’s pore pressure generation by 

strain-controlled cyclic loadings, even if these fine-grained soils are conditioned at 

different temperatures or freeze-thaw cycles. The prediction of pore pressure 

generation may be conducted only by attaining stress-strain history and selection of 

PEC, which has been gained in this study.  

The thermal conditioning path was found to strongly affect the liquefaction potential 

of Mabel Creek silt. This investigation was conducted to compare the pore pressure 

generation of Mabel Creek silt at 0.5ºC and 0.2ºC through three different conditioning 
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paths. Comparison indicates that the conditioning paths will affect the liquefaction 

potential of Mabel Creek silt. For the target temperature of 0.5ºC, short term (2 days) 

thawed conditioning (Path 1) would maximally increase liquefaction potential. For the 

target temperature of -0.2ºC, short term (2 days) and long term (7 days) thawed 

conditioning caused no difference. The Mabel Creek silt in these two conditions still 

acted like a fine-grained soil in a frozen state and pore pressure could not be 

generated under cyclic loading. However, direct freezing at -0.2ºC for 2 days (Path 3) 

could not cause freezing in a large portion of the sample and pore pressure could still 

be generated under cyclic loading.  
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5 Dynamic Properties of Mabel Creek Silt 

5.1 Introduction 

Dynamic properties of soil play a major role in determining behavior and deformation 

characteristics under seismic loading conditions. Shear modulus (G) and damping 

ratio (D) are the two dynamic properties commonly used to examine strain dependent 

nonlinear behavior of soil. Shear modulus and damping ratio are affected by many 

factors, such as confining pressure, void ratio, geologic age, cementation, 

overconsolidation ratio, plasticity index, cyclic strain, strain rate, and number of 

loading cycles (Hardin and Drnevich 1972; Kokusho et al. 1982; Dobry and Vucetic 

1987). Additionally, temperature and water content have significant impact on 

dynamic response of soil (Vinson 1978; Czajkowski and Vinson 1980; Fukuda and 

Huang 1991). 

In this study, shear modulus and damping characteristics of Mabel Creek silt were 

investigated for temperature and freeze-thaw effects. This chapter provides the reader 

with values for dynamic shear modulus and damping ratio for Mabel Creek silt 

conditioned at various temperatures, including near-freezing temperature, and at 

various freeze-thaw cycles. The ground temperatures studied were 24ºC, 5ºC, 1ºC, 

0.5ºC, and -0.2ºC. The seasonal variation of ground temperature was simulated by 

subjecting soil specimens to 1, 2, and 4 freeze-thaw cycles. The unfrozen specimens 

refer to the specimens without any freezing or thawing treatments. The results from 

the unfrozen specimen were considered as a baseline in this study. All specimens were 

prepared at a consolidation void ratio of 1.06 and an initial effective confining 

pressure of approximately 100 kPa. Undrained triaxial strain-controlled tests were 

conducted to acquire dynamic shear modulus and damping ratio. Moreover, shear 

strain and number of loading cycles were also considered in evaluating shear modulus 

and damping ratio.  
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5.2 Dynamic properties of unfrozen Mabel Creek silt 

Figure 5.1 illustrates how dynamic shear modulus (G) for unfrozen Mabel Creek silt 

varies with: a) number of load cycles; b) developed excess pore pressure; and c) 

induced cyclic shear strain. The trend in Figure 5.1a. suggests that for shear strains 

between 0.005% and 0.05%, the shear modulus remains constant irrespective of the 

number of loading cycles; however, at γ=0.8%, the number of loading cycles appears 

to have a significant influence on shear modulus indicating that shear modulus 

decreases with increase in the number of loading cycles. This may be attributed to the 

decrease in effective confining pressure caused by the excess pore water pressure 

buildup under undrained conditions as shown in Figure 5.1b. Larger values of shear 

modulus were obtained when ru is equal to or near zero, while significant degradation 

was observed when ru was close to 100%. Figure 5.1c shows the variation of shear 

modulus with respect to the induced cyclic shear strain. The shear modulus generally 

decreases with increased level of cyclic shear strain, which is traditionally referred to 

as cyclic degradation.   

Figure 5.2 shows the damping ratio (D) for unfrozen Mabel Creek silt. Similar 

evaluations to those presented for shear modulus were made for damping in Figure 

5.2. According to the history of damping ratio, which is shown in Figure 5.2a, there 

are three different trends. The damping response of the specimens tested at shear 

strains between 0.005% and 0.01% was found to be similar: D was approximately 

equal in value of 4~5% at these strain levels and remained nearly constant with 

increasing number of loading cycles. The specimens tested at 0.05%, 0.1%, and 0.3% 

shear strains showed a slight decrease in damping with increasing number of loading 

cycles. The damping response of the specimen tested at γ=0.8% showed a slight 

increase in damping values with increasing number of loading cycles up to N=10; 

however, an increase in damping was found to occur at a much greater rate beyond 

N=10. Variation of damping ratio during damping ratio history may be attributed to 
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generation of pore pressure induced by cyclic loading. The relationship between 

excess pore pressure generation and damping ratio presented in Figure 5.2b reflects 

this attribution. Damping ratio remained a constant value (approximately 5%) at 

γ=0.005% and γ=0.01% when the excess pore pressure was not generated at all. At 

γ=0.05%, γ=0.1% and γ=0.3%, damping ratio decreased with an increase in the 

corresponding ru to 40%. As ru increased to values between 40%~80%, the damping 

ratio remained nearly constant. For example, D was at 18% and 22%, respectively, for 

γ=0.1% and for γ=0.3%. When ru was near 100% (i.e., the liquefaction state), a 

dramatic increase in damping ratio occurred, which was observed at γ=0.8%: damping 

ratio even increased to 63% at the corresponding ru=93%. The damping ratio versus 

cyclic shear strain is presented in Figure 5.2c. In general, the damping ratio appears to 

increase with increasing cyclic shear strain.  

5.3 Dynamic properties of Mabel Creek silt conditioned at 24ºC, 5ºC, 1ºC, 

0.5ºC, and -0.2ºC 

The shear modulus for specimens conditioned at 24ºC is presented in Figure 5.3. 

More specifically, the influence of load cycles, excess pore pressure, and cyclic shear 

strain on the shear modulus is examined in Figure 5.3a to Figure 5.3c. The impact of 

number of loading cycles is shown in Figure 5.3a. This figure shows that the shear 

modulus remained unchanged at 41.5 MPa for the small shear strain of 0.005%.  

This shear strain is less than the threshold shear strain. Degradation of shear modulus 

occurred at medium to large shear strain between 0.1% and 0.8%. Shear modulus was 

shown to degrade with pore pressure; see Figure 5.3b. At γ=0.005% the excess pore 

pressure was found to be approximately zero. At this value, there was no degradation 

in shear modulus. Shear modulus was found to degrade as pore pressure increased.  

A shear modulus of approximately 41.5 MPa was found not to change when ru was 

near zero. Shear modulus at γ=0.8% degraded to 0.6 MPa at N=50; this corresponded 
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to an ru of 87%. A decrease in shear modulus with an increase in cyclic shear strain is 

shown in Figure 5.3c. 
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Figure 5.1  Shear modulus (G) on unfrozen Mabel Creek silt: (a) G vs N; (b) G vs ru; 

(c) G vs γ
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Figure 5.2  Damping ratio (D) on unfrozen Mabel Creek silt: (a) D vs N; (b) D vs ru; (c) 

D vs γ
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Figure 5.3  Shear modulus (G) on Mabel Creek silt conditioned at 24ºC: (a) G vs N; (b) 

G vs ru; (c) G vs γ 
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Figure 5.4 shows damping ratio for specimens conditioned at 24ºC. Damping ratio 

histories for shear strains between 0.005% and 0.8% were found to follow two trends; 

see Figure 5.4a. At the small shear strain level of 0.005%, the damping ratio remained 

constant at approximately 5% during 50 loading cycles. For medium to large shear 

strain levels from 0.1% to 0.8%, the damping ratio was found to decrease with 

increasing loading cycles, although constant damping ratios after N=10 were found to 

occur at γ=0.3% and 0.8%. The influence of pore pressure generation on damping 

ratio is shown in Figure 5.4b. Similar to the unfrozen specimens, findings for the 

specimens conditioned at 24ºC show that constant and small damping ratios were 

observed at ru near zero (0), while a decrease in damping ratios was observed with 

increase in ru at the range of 0 to 40%. However, damping ratios remained nearly 

constant with increase ru (values between 40% to 87%).  For the limited data set, no 

dramatic increase in damping ratio occurred when ru was close to 100%. There was an 

increasing trend in damping ratio with an increasing cyclic shear strain. This trend is 

shown in Figure 5.4c. 

The shear modulus for specimens conditioned at 5ºC during testing for cyclic loading 

is presented in Figure 5.5. For a small shear strain level of 0.005%, pore pressure was 

not generated, and shear modulus remained at about 45 MPa through the cyclic 

loading test; the shear modulus did not degrade. Shear modulus slightly reduced from 

15.2 MPa at N=1 to 13.4 MPa at N=50 for γ=0.1. Excess pore pressure ratio increased 

from 1% at N=1 to 26% at N=50. As γ increased to 0.3%, shear modulus decreased 

from 7.7 MPa at N=1 to 4.6 MPa at N=50 while excess pore pressure ratio increased 

from 9% to 60%. Like the trend for shear modulus with respect to induced shear strain 

on specimens conditioned at 24ºC, shear modulus on specimens conditioned at 5ºC 

decreased with increasing cyclic shear strain as shown in Figure 5.5c. 
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Figure 5.4  Damping ratio (D) on Mabel Creek silt conditioned at 24ºC: (a) D vs N; (b) 

D vs ru; (c) D vs γ 
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Figure 5.5  Shear modulus (G) on Mabel Creek silt conditioned at 5ºC: (a) G vs N; (b) 

G vs ru; (c) G vs γ 
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Damping ratio variability for specimens conditioned at 5ºC is presented in Figure 5.6. 

Shear strains between 0.005% and 0.3% are presented. For small shear strain levels 

near 0.005%, the damping ratio was nearly a constant 4%. Further, it remained at 

nearly a constant value of 4% during the cyclic loading test when ru = 0. As γ 

increased to 0.1%, damping ratios decreased from 22% at N=1 to 14% at N=50 while 

the corresponding ru increased from 1% at N=1 to 26% at N=50. In the same manner 

for the specimen with γ=0.3%, damping ratio decreased from 23% at N=1 to 17% at 

N=50; meanwhile ru changed from 9% to 60%. Damping ratio was found to have an 

increasing trend with increasing shear strain; see Figure 5.6c.   

Shear modulus for specimens conditioned at 1ºC is shown in Figure 5.7. This figure 

shows that shear modulus remained constant (no degradation), and no pore pressure 

was generated at small shear strains near 0.005%. Degradation of shear modulus was 

observed at large shear strains between 0.1% and 0.3%. Shear modulus at γ=0.1% 

slightly reduced from 14.1 MPa at N=1 to 12.5 MPa at N=50 while ru varied from 5% 

at N=1 to 30% at N=50. The buildup of the excess pore pressure ratio changed from 

5% at N=1 to 50% at N=50 for γ=0.3%.  The change in the excess pore pressure 

ratio induced a degradation in shear modulus from 8.6 MPa at N=1 to 5.7 MPa at 

N=50. Shear modulus was found to degrade with an increase in cyclic shear strain but 

was independent of the loading cycle; see Figure 5.7c.  

Figure 5.8 presents the damping ratio for specimens conditioned at 1ºC.  At small 

shear strain levels of 0.005%, the damping ratio remained nearly constant at 

approximately 0.05 with increasing loading cycles and no pore pressure generation 

occurred. A decreasing trend in damping ratio was observed during cyclic loadings for 

specimens at γ=0.1%. Further, the damping ratio decreased from 21% at N=1 to 14% 

at N=50 while the corresponding ru generated varied from 5% at N=1 to 30% at N=50.  

A similar decreasing damping ratio was found at a shear strain level of 0.3%. The 
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damping ratio for specimens at γ=0.3% decreased from 24% at N=1 to 18% at N=50 

as ru increased from 5% at N=1 to 50% at N=50. An increase in damping ratio with 

increase in cyclic shear strain also was observed for specimens conditioned at 1ºC; see 

Figure 5.8c. 

Shear modulus for specimens conditioned at 0.5ºC is shown in Figure 5.9. Shear 

modulus was approximately constant (about 77 MPa) at the small shear strain values 

of 0.005%. At these values, there was no pore pressure generation. Shear modulus 

values for specimens conditioned at 0.5ºC were much higher than for the specimens 

conditioned at 1ºC, 5ºC, and 24ºC. At γ=0.1% the shear modulus decreased from 20.0 

MPa at N=1 to 17.2 MPa at N=50. This corresponded to an increase in excess pore 

pressure ratio from 5% at N=10 to 42%. At γ=0.3% the excess pore pressure ratio in 

the specimens rapidly increased from 20% at N=1 to 83% at N=50.  Subsequently, 

the shear modulus dramatically decreased from 7.9 MPa at N=1 to 3.3 MPa at N=50. 

Figure 5.9c illustrates that shear modulus decreased as cyclic shear strain increased. 

Figure 5.10 shows damping ratio for samples conditioned at 0.5ºC.  Similarly, at 

small shear strains near 0.005%, damping ratios were nearly constant with a value 

approximating 10%.  This continued with increasing cyclic loadings as a 

corresponding ru was generated.  At γ=0.1% the damping ratio decreased from 25% 

at N=1 to 19% at N=50.  This was accompanied by a pore pressure generation that 

changed from 5% at N=1 to 42% at N=50. However, the damping ratio did not always 

experience a decreasing trend with increasing loading cycles at γ=0.3%. As excess 

pore pressure ratio increased from 20% at N=1 to 58% at N=10, the damping ratio 

decreased from 26% at N=1 to 21% at N=10.  Further, an additional increase in 

excess pore pressure ratio resulted in a decrease in the damping ratio from 21% at 

N=10 to 23% at N=50. Though the damping ratio for specimens conditioned at 0.5ºC 

appeared to be different at γ=0.3%, the damping ratio still increased with increasing 

cyclic shear strain as shown in Figure 5.10c.
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Figure 5.6  Damping ratio (D) on Mabel Creek silt conditioned at 5ºC: (a) D vs N; (b) 

D vs ru; (c) D vs γ 
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Figure 5.7  Shear modulus (G) on Mabel Creek silt conditioned at 1ºC: (a) G vs N; (b) 

G vs ru; (c) G vs γ 
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Figure 5.8  Damping ratio (D) on Mabel Creek silt conditioned at 1ºC: (a) D vs N; (b) 

D vs ru; (c) D vs γ
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Figure 5.9  Shear modulus (G) on Mabel Creek silt conditioned at 0.5ºC: (a) G vs N; 

(b) G vs ru; (c) G vs γ 
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Figure 5.10  Damping ratio (D) on Mabel Creek silt conditioned at 0.5ºC: (a) D vs N; (b) 

D vs ru; (c) D vs γ 
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The shear modulus for specimens conditioned at -0.2ºC is shown in Figure 5.11. 

Degradation of the shear modulus with increasing load cycles was not observed at 

γ=0.005%, γ=0.03%, or γ=0.1%. The measured shear modulus was nearly constant 

and the value was approximately 330 MPa at γ=0.005% as the excess pore pressure 

ratio developed from 1% to 9%. Similarly, a constant shear modulus of approximately 

170 MPa was observed at γ=0.03% with increased excess pore pressure ratio from 2% 

at N=1 to 5% at N=50.  Even when excess pore pressure ratio decreased to a 

negative value of -7% at γ=0.1%, the shear modulus still remained nearly constant at 

80 MPa. Regardless of negative or positive pore pressure generation, the shear 

modulus was found to always decrease with increasing shear strain; see Figure 5.11c.  

Damping ratios for specimens conditioned at -0.2ºC are presented in Figure 5.12. 

Unlike the specimens that were conditioned at other temperatures, the excess pore 

pressure generation in specimens conditioned at -0.2ºC was minimal to negative, and 

the corresponding damping ratio did not fluctuate very much. The data show that 

when γ=0.005%, the damping ratio is approximately 4% when ru is 9%. At γ=0.03% 

the measured damping ratio was nearly constant at 24% while the excess pore 

pressure ratio generated was 5% at N=50. The results show that a negative excess 

pore pressure ratio of -7% existed for γ=0.1% during 50 loading cycles and that there 

was a decrease in damping ratio from 30% at N=1 to 27% at N=50. The trend that 

damping ratio increases with increasing shear strain was observed for specimens 

conditioned at -0.2ºC; see Figure 5.12c.    
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Figure 5.11  Shear modulus (G) on Mabel Creek silt conditioned at -0.2ºC: (a) G vs N; 

(b) G vs ru; (c) G vs γ 
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Figure 5.12  Damping ratio (D) on Mabel Creek silt conditioned at -0.2ºC: (a) D vs N; 

(b) D vs ru; (c) D vs γ 
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5.4 Temperature effect on dynamic properties 

5.4.1 Temperature effect on shear modulus 

A comparison of the dynamic shear modulus for specimens of unfrozen Mabel Creek 

silt and specimens of the Mabel silt conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC 

was made in terms of number of load cycles at shear strain levels of 0.005%, 0.1% 

and 0.3%, respectively. Figure 5.13a shows a comparison for a shear strain level of 

0.005%. Shear modulus values were dependent on conditioning temperature and 

constant with increasing load cycles for a shear strain level of 0.005%.  The largest 

shear modulus occurred when specimens were conditioned at -0.2ºC, whereas the 

smallest shear modulus occurred for unfrozen specimens. The second largest shear 

modulus was observed when specimens were conditioned at 0.5ºC. Shear modulus for 

specimens conditioned at 24ºC was slightly larger than for specimens conditioned at 

1ºC and smaller for specimens conditioned at 5ºC. This phenomenon did not seem to 

change with the number of load cycles. However, differences in shear modulus 

between unfrozen specimens and those that were conditioned at 1ºC, 5ºC, and 24ºC 

were small (see the log-scale for shear modulus).  

Figure 5.13b shows how the Mabel Creek silt dynamic shear modulus at γ=0.1% 

varies with specimen conditioning temperature. Maximum shear modulus occurred 

when specimens were at -0.2ºC and the corresponding minimum shear modulus 

occurred in unfrozen specimens. The second highest shear modulus was measured in 

specimens conditioned at 0.5ºC. Shear modulus in specimens conditioned at 1ºC, 5ºC, 

and 24ºC were similar, no matter the number of load cycles.   

Figure 5.13c shows the dynamic shear modulus for specimens subjected to a shear 

strain level of 0.3% and conditioned at various temperatures.  The shear modulus for 

all specimens was found to decrease with increasing load cycle. Unfrozen specimens 

were found to have the smallest shear modulus. The largest shear modulus did not 
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occur on the specimen conditioned at 0.5ºC but occurred on the specimen conditioned 

at 1ºC.  Shear modulus for specimens conditioned at 5ºC was slightly larger than the 

shear modulus in specimens conditioned at 24ºC.  Shear modulus for specimens 

conditioned at 0.5ºC was significantly smaller than the values for -0.2ºC.  Further, 

the shear modulus for the specimens conditioned at 0.5ºC had a similar value to 

specimens conditioned at 1ºC from N=1 to N=5. However, the shear modulus was 

significantly smaller than values measured for specimens conditioned at 24ºC with 

increasing loading cycles from N=10 to N=50.  

 

Figure 5.13  Temperature rise effect on shear modulus of Mabel Creek silt
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Conditioned temperature effects on shear modulus as a function of cyclic shear strain 

are shown in Figure 5.14. Shear modulus values for unfrozen specimens are the lower 

bound whereas the highest shear modulus (upper bound) occurs for specimens that 

were conditioned at -0.2ºC. The second highest shear modulus was found to occur in 

specimens that were at 0.5ºC, and the shear strain level was between 0.005% and 

0.1%.  The shear modulus for specimens conditioned at 0.5ºC and subjected to large 

shear strains (γ=0.3%) was less than or equal to those values where the specimens 

were conditioned at 1ºC, 5ºC, and 24ºC.   

 

 

Figure 5.14  Shear modulus versus cyclic shear strain on Mabel Creek silt conditioned 

at the different temperatures for N=10 
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Temperature effects on shear modulus were investigated by introducing a normalized 

process of G/Gmax to all specimens at various temperatures. Gmax was derived from the 

cyclic triaxial undrained strain-controlled tests with a small shear strain (γ < γt). The 

normalized modulus reduction (G/Gmax) in all specimens conditioned at various 

temperatures forms curves in a narrow band; see Figure 5.15. The modulus reduction 

in specimens conditioned at -0.2ºC and 0.5ºC formed the lower bound. The 

unrecognizable and similar normalized modulus reduction observed in specimens 

conditioned at 1ºC, 5ºC, and 24ºC provided the upper bound.  

 

Figure 5.15  The normalized modulus reduction (G/Gmax) versus γ in specimens 

conditioned at various temperatures 

Under undrained cyclic loading tests, damping ratio and shear modulus will vary with 

an increased number of loading cycles, as was found in Sections 5.2, 5.3, and 5.6.  

Damping ratio and shear modulus depend on both effective pore water pressure and 

cyclic shear strain. That is to say, an increase in pore water pressure induced under 

undrained cyclic loading decreases the effective confining pressure. Further, the cyclic 

shear strain was found to influence the soil’s dynamic properties. Thus, investigation 
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and comparison of the impact of temperature and freeze-thaw cycles on dynamic 

properties should not overlook the influence of excess pore pressure and cyclic shear 

strain. They should involve the consideration of ru and γ.  

The variation in dynamic shear modulus as a function of excess pore water pressure 

ratio for samples conditioned at different temperatures and shear strain values of 

γ=0.005%, γ=0.1%, and γ=0.3% is presented in Figure 5.16. For the small shear strain 

of 0.005%, specimens conditioned at 0.5ºC show the highest shear modulus, while 

unfrozen specimens had the lowest shear modulus. At γ=0.1% the largest shear 

modulus occurred when specimens were conditioned at 0.5ºC, and the smallest shear 

modulus was found when the specimens were unfrozen. The variation in shear 

modulus with increasing shear strain for specimens conditioned at 1ºC, 5ºC, and 24ºC 

behaved in a similar manner and was difficult to distinguished, as was the case at 

γ=0.3%.  

Temperature effects on shear modulus were studied by testing partially frozen, thawed 

and frozen specimens of the Mabel Creek silt. Also, the influence of temperature was 

somewhat revealed by examining the damping ratio versus the conditioned 

temperature at shear strain levels of 0.005%, 0.1%, and 0.3%; see Figure 5.17 to 

Figure 5.19. At the small shear strain of 0.005%, and conditioning temperatures 

between -0.2ºC and 1ºC, test results show a significant decrease in shear modulus 

with an increase in the conditioning temperature. However, when specimens were 

conditioned at temperatures between 1ºC and 24ºC, test results show that the change 

in shear modulus was minimal. A similar trend in shear modulus was found at the 

larger shear strain of 0.1%; see Figure 5.18. At this shear strain, the shear modulus 

was found to decrease at conditioned temperatures from -0.2ºC to 1ºC and remain 

nearly constant for conditioned temperatures above 1ºC; see Figure 5.18. At a shear 

strain of 0.3%, data from the specimen conditioned at -0.2ºC were not shown because 

of the limited capacity of the test instruments. Unlike the cases at γ=0.005% and 
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γ=0.1%, shear modulus remained nearly the same for conditioned temperatures 

between 0.5ºC to 1ºC. Additionally, a conditioned temperature from 1ºC to 24ºC 

caused a slight decrease of the shear modulus. 

 

 

Figure 5.16  Shear modulus (G) versus ru on Mabel Creek silt conditioned at the 

various temperatures  
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Figure 5.17  Shear modulus versus the conditioned temperature on Mabel Creek silt 

for γ=0.005% 

 

1

10

100

S
h

ea
r 

m
o

d
u

lu
s,

 G
, 
M

P
a

2520151050-5

The conditioned temperature,°C

 N=1

 N=10

 N=50 s3'=100kPa;e=1.06;g=0.1%

 

Figure 5.18  Shear modulus versus the conditioned temperature on Mabel Creek silt 

for γ=0.1% 
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Figure 5.19  Shear modulus versus the conditioned temperature on Mabel Creek silt 

for γ=0.3% 

 

5.4.2 Temperature effect on damping ratio 

Damping ratios for specimens of unfrozen Mabel Creek silt and specimens 

conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC as a function of the number of 

loading cycles are summarized for the following three different shear strains:  

0.005%, 0.1%, and 0.3%; see Figure 5.20. The influence of an increase in specimen 

temperature on damping ratio was compared for frozen or partially frozen Mabel 

Creek silt. Figure 5.20a shows a damping ratio comparison for specimens conditioned 

at different temperatures when the shear strain level was 0.005%. At this small shear 

strain level, the damping ratio for specimens remained nearly constant at a value in 

the range of 4~10% regardless of the number of load cycles or the conditioning 

temperature. The largest damping ratio of approximately 10% was found to occur 

when specimens were conditioned at 0.5ºC. A nearly constant damping ratio 

approximating 5% was observed on unfrozen specimens and specimens conditioned at 

-0.2ºC, 1ºC, 5ºC, and 24ºC, regardless of the number of load cycles. Thus, it may be 

concluded that specimens conditioned at -0.2ºC, 1ºC, 5ºC, 24ºC and the unfrozen 

specimen have similar damping ratios of approximately 5% under cyclic loading and 
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small shear strain.  

A comparison between damping ratios for specimens conditioned at different 

temperatures at a shear strain level of 0.1% is shown in Figure 5.20b. This figure 

shows the effect of temperature rise on the damping ratio. All specimens show a trend 

that the damping ratio decreases with increasing loading cycles at a shear strain level 

of 0.1%. The unfrozen specimen had the smallest damping ratios, whereas the 

damping ratios of the specimen conditioned at -0.2ºC was the largest. Damping ratios 

for the unfrozen specimen and the specimen conditioned at -0.2ºC after 50 loading 

cycles were 12% and 27%, respectively. The specimen conditioned at 0.5ºC had the 

second largest damping ratios with values of 25% at N=1 and 19% at N=50. The 

specimen conditioned at 5ºC showed a slightly larger damping ratio than the 

specimens conditioned at 1ºC and 24ºC; however, the difference in damping ratios 

was approximately 2%. Thus, the damping ratios for specimens conditioned at 1ºC, 

5ºC, and 24ºC may be considered to be the same or to have behaved in a similar 

manner.  

Similarly, a damping ratio comparison between specimens conditioned at different 

temperatures when the shear strain level was 0.3% is shown in Figure 5.20c. This 

figure shows that damping ratios are the smallest when the material is unfrozen. The 

unfrozen damping ratio for a shear strain level of 0.3% is changed from 21% at N=1 

to 18%. The damping ratio was found to decrease with an increase in the number of 

load cycles in all specimens except the specimen conditioned at 0.5ºC. The damping 

ratio of the specimen conditioned at 0.5ºC first decreased from N=1 to N=10 and then 

slightly increased from N=10 to N=50. The damping ratio for a specimen conditioned 

at 0.5ºC increased to 23% at the end of the 50
th

 loading cycle, whereas the damping 

ratio for the specimen conditioned at 24ºC was 22% for the same 50
th

 loading cycle. 

The difference of damping ratios for specimens conditioned at 1ºC, 5ºC, and 24ºC was 

observed at the shear strain level of 0.3%. The damping ratio of the specimen 
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conditioned at 5ºC was larger than that of the specimen conditioned at 24ºC and 

smaller than that of the specimen conditioned at 1ºC for any given number of loading 

cycles. 

 

Figure 5.20  Temperature rise effect on damping ratio of Mabel Creek silt  

Damping ratios as a function of cyclic shear strain in all specimens conditioned at 

various temperatures are shown in Figure 5.21. Damping ratios for the unfrozen 

specimens give the smallest; these are the lower bound. Damping ratios in specimens 

conditioned at -0.2ºC formed the upper bound curve. The second largest damping 

ratios were found in specimens conditioned at 0.5ºC. Specimens conditioned at 1ºC, 

5ºC, and 24ºC were observed to have nearly similar damping ratio curves.  
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Figure 5.21  Damping ratio versus cyclic shear strain on Mabel Creek silt conditioned 

at the different temperatures for N=10 

 

The temperature effect on damping ratio and on the excess pore water pressure ratio 

were compared at γ=0.005%, γ=0.1%, γ=0.3%, and γ=0.8% as shown in Figure 5.22. 

For γ=0.005%, the specimen conditioned at 0.5ºC was found to have a large damping 

ratio. For γ=0.1%, the unfrozen specimen and the specimens conditioned at 1ºC, 5ºC, 

and 24ºC showed similar damping ratios: all were less than that of the specimen 

conditioned at 0.5ºC. For γ=0.3%, the specimens conditioned at 0.5ºC and 24ºC 

provided the upper bound in damping ratios. The unfrozen specimen provided the 

lower bound of damping ratio. 
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Figure 5.22  Damp ratio (D) versus ru on Mabel Creek silt conditioned at the different 

temperatures  

 

The effect of temperature rise on damping ratio was investigated for partially frozen 

and frozen specimens of the Mabel Creek silt. A summary of these results is presented 

in Figure 5.23~Figure 5.25. These figures show how the damping ratio varied as a 

function of the specimen conditioning temperature and shear strain levels of 0.005%, 

0.1%, and 0.3%. For small shear strain of 0.005%, the increase from -0.2ºC to 0.5ºC 

increased the damping ratio. When specimen conditioning temperature was increased 

from 5ºC to 24ºC, the damping ratio was found to slightly increase. For the larger 

shear strain of 0.1%, the damping ratio increased with temperature for the temperature 

range of 0.5ºC to 1ºC. Change of the damping ratio with increased temperature from 
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1ºC to 24ºC was minimal in comparison with the change of damping ratio induced at 

temperatures from 0.5ºC to 1ºC. At the largest shear strain of 0.3%, there was a slight 

decrease in the damping ratio, and this occurred for specimen conditioning 

temperatures between 0.5ºC and 5ºC. At this shear strain, there was only a slight 

increase in damping ratio for higher conditioning temperatures. 
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Figure 5.23  Damping ratio versus the conditioned temperature on Mabel Creek silt for 

γ=0.005% 
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Figure 5.24  Damping ratio versus the conditioned temperature on Mabel Creek silt for 

γ=0.1% 
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Figure 5.25  Damping ratio versus the conditioned temperature on Mabel Creek silt for 

γ=0.3% 

 

5.5 Discussion of dynamic properties at various temperatures 

To further evaluate temperature effect on dynamic properties, dynamic shear modulus 

and damping ratios in this study were compared with those from previous studies in 

frozen and unfrozen fine-grained soil. Czajkouski and Vinson (1980) conducted 

triaxial strain-controlled tests on Alaska silt. Their studies were conducted for the 

purpose of evaluating dynamic properties of Alaska frozen silt. As part of their study, 

specimens of Alaska silt were prepared at water contents of 20.5% and 38.9%. 

Specimens were conditioned at three temperatures below freezing temperatures; these 

were: -1ºC, -4ºC, and -10ºC. A combination of Czajkouski and Vinson’s 1980 results 

and the results in this study provides a foundation of knowledge regarding the 

influence of temperature on dynamic properties. These examined temperatures 

include below freezing, near freezing and above freezing temperature. A comparison 

between damping ratios is presented in Figure 5.26. An increase in temperature for the 

Alaska silt will likely reflect a trend for the damping ratio to increase. Near freezing, 

the damping ratio in this study was found to be an upper bound value. For 

temperatures above freezing, an increase in temperature was found to cause the 
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damping ratio to decrease. Figure 5.26 shows the variation in damping ratio with 

increasing temperature from below freezing to above freezing, the damping ratio was 

found to increase with increasing temperature below freezing. It reached a maximum 

at or near freezing temperature, and it decreased with additional temperature increase 

above freezing. Figure 5.27 shows a comparison for shear modulus. Shear modulus 

for specimens in the frozen state was greater than the shear modulus for specimens 

near the freezing state. The shear modulus for specimens near the freezing state was 

greater than that of the shear modulus for specimens above the freezing state. 

However, when temperature is above freezing temperature, the increase in the 

conditioned temperature cannot induce much change in shear modulus.  

Dynamic properties for unfrozen fine-grained soil (Vucetic and Dobry 1991) were 

compared with the results from this study. Variations in the damping ratios for 

specimens of the Mabel Creek silt conditioned at various temperatures were evaluated 

and compared with results from Vucetic and Dobry (1991); see Figure 5.28. The curve 

of damping ratio versus induced shear strain in unfrozen Mabel Creek silt was found 

to be along a narrowed band formed by the curves for IP=0 and IP=15. Mabel Creek 

silt was measured to have an IP of 5.3, which is consistent with the findings by 

Vucetic and Dobry (1991). An increase in the damping ratio at above freezing 

temperatures was observed near the damping ratio curve at PI=0. However, at near 

freezing temperatures, the damping ratio was higher than upper bound values for 

fine-grained soil from Vucetic and Dobry (1991). Normalized modulus reduction 

curves for the Mabel Creek silt at various temperatures were combined with the 

results from Vucetic and Dobry (1991); see Figure 5.29. Except for the value of 

G/Gmax  at the small shear strains,  normalized shear modulus reduction at near 

freezing temperatures like 0.5ºC and -0.2ºC almost superpose the curve at PI=0. 

Normalized shear modulus reduction at above freezing temperature was located 

between the curve at PI=0 and the curve at PI=15. 
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Figure 5.26  Comparison of damping ratio between Mabel Creek silt conditioned at 

various temperatures and frozen Alaska silt 

 

Figure 5.27  Comparison of shear modulus between Mabel Creek silt conditioned at 

various temperatures and frozen Alaska silt 
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Figure 5.28  Comparison of damping ratio between Mabel Creek silt conditioned at 

various temperatures and fine-grained soil (from Vucetic and Dobry 1991)  

 

Figure 5.29  Comparison of normalized shear modulus reduction between Mabel 

Creek silt conditioned at various temperatures and fine-grained soil (from 

Vucetic and Dobry 1991) 
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5.6 Dynamic properties of Mabel Creek silt conditioned by the freeze-thaw 

cycles 

Shear modulus for specimens conditioned after 2 freeze-thaw cycles is shown in 

Figure 5.30. A constant shear modulus of approximately 41.0 MPa was observed at 

γ=0.005% with no pore pressure generation during the whole cyclic loading test. 

Slight degradation of shear modulus for γ=0.1% was measured from 14.5 MPa at N=1 

to 12.5 MPa at N=50.  During these tests the excess pore pressure ratio increased 

from 6% at N=1 to 29% at N=50. There was a reduction in shear modulus at γ=0.3%.  

The value reduced from 7.2 MPa at N=1 to 4.5 MPa at N=50. During this test the 

excess pore pressure ratio increased from 16% at N=1 to 61% at N=50. At γ=0.8% 

there was a significant degradation of shear modulus from 3.2 MPa at N=1 to 0.8 MPa 

at N=50, and during these tests the excess pore pressure ratio increased substantially 

from 19% at N=1 to 81% at N=50. Figure 5.30c shows the reduction in shear modulus 

with increasing levels of shear strain.   

Figure 5.31 shows the influence of 2 freeze-thaw cycles on damping ratio for 

specimens of the Mabel Creek silt. Damping ratios for shear strain levels between 

0.01% and 0.8% are presented. The test results show that when specimens were 

conditioned at 2 freeze-thaw cycles, 2 different damping ratio histories occurred. For 

example, Figure 5.31a shows that the damping ratio at small shear strain (such as 

0.01%) is nearly constant, but there was a continuous decrease in damping ratio with 

an increase in loading cycles at medium to large shear strain values of 0.1%, 0.3%, 

and even 0.8%. At 0.01%, a constant damping ratio of approximately 5% was 

observed when excess pore pressure ratio was generated from 0% at N=1 to 1% at 

N=50. At the larger shear strain level of 0.1%, the damping ratio decreased from 23% 

at N=1 to 15% at N=50 while the excess pore pressure ratio was developed from 6% 

at N=1 to 29%. Similarly, the damping ratio for specimens at γ=0.3% were found to 

decrease from 28% at N=1 to 20% at N=50, and this was accompanied by an increase 
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of excess pore pressure ratio from 16% at N=1 to 61% at N=50. Even at γ=0.8% the 

pore pressure generation of ru=81% resulted in a decrease in the damping ratio from 

31% at N=1 to 25% at N=50. For specimens conditioned after 2 freeze-thaw cycles, 

increasing cyclic shear strain resulted in an increase in the damping ratio for all 

loading cycles; see Figure 5.31c. 

Figure 5.32 shows the shear modulus for specimens conditioned after 4 freeze-thaw 

cycles.  These specimens were at shear strain levels between 0.005% and 0.8%. A 

constant shear modulus of about 41.0 MPa was observed at γ=0.005% with a 

corresponding ru of approximately 0%. A slight degradation in shear modulus 

occurred at γ=0.1% and γ=0.3%. Degradation of shear modulus for γ=0.1% ranged 

from 15.2 MPa at N=1 to 13.1 MPa at N=50. For these tests the generation of the 

excess pore pressure ratio increased from 7% at N=1 to 27% at N=50. Similarly, shear 

modulus decreased from 7.1 MPa at N=1 to 4.8 MPa at N=50 with development of 

the excess pore pressure ratio from 16% at N=1 to 57% at N=50. A dramatic reduction 

in shear modulus occurred at γ=0.8%. During this test the specimen rapidly softened 

from a G of 3.5 MPa at N=1 to a G of 0.9 MPa at N=50 while the excess pore 

pressure ratio changed from 26% at N=1 to 78% at N=50. A reduction of shear 

modulus with increasing cyclic shear strain is seen in Figure 5.32c.  

Damping ratios for specimens conditioned after 4 freeze-thaw cycles are shown in 

Figure 5.33.  At the small shear strain of 0.005, the damping ratio was found to be a 

nearly constant value of 2% while ru was approximately 0. At γ=0.1% the damping 

ratio was found to decrease from 24% at N=1 to 16% at N=50, and the corresponding 

excess pore pressure ratio increased from 7% at N=1 to 27% at N=50. In the same 

manner, the damping ratio at γ=0.3% decreased from 30% at N=1 to 22% at N=50 

while the excess pore pressure ratio changed from 16% at N=1 to 57% at N=50. The 

damping ratio at γ=0.8% behaved differently. For example, the damping ratio initially 

decreased from 32% at N=1 to 27% at N=10 with the excess pore pressure ratio 
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generation changing from 26% at N=1 to 58% at N=10. At N=50 the excess pore 

pressure ratio increased to 78%. Subsequently, at N=50 the damping ratio slightly 

increased 27% at N=10 to 29% at N=50. The data show that the damping ratio for a 

specimen conditioned for 4 freeze-thaw cycles tends to increase with an increase in 

cyclic shear strain; see Figure 5.33c.  



 

 

 118 

0.1

1

10

100
S

h
ea

r 
M

o
d

u
lu

s,
 G

, 
M

P
a

1 10 100

Number of cycles, N

 g=0.01%

 g=0.1%

 g=0.3%

 g=0.8%

s3'=100kPa;e=1.06

(a)

 

0.1

1

10

100

S
h

ea
r 

M
o

d
u

lu
s,

 G
, 

M
P

a

100806040200

Excess pore pressure ratio, ru, %

 g=0.01%

 g=0.1%

 g=0.3%

 g=0.8%

s3'=100kPa;e=1.06

(b)

 

0.1

1

10

100

S
h

ea
r 

M
o

d
u

lu
s,

 G
, 
M

P
a

0.001 0.01 0.1 1

Cyclic shear strain, g, %

s3'=100kPa;e=1.06

 N=1

 N=10

 N=50
(c)

 

Figure 5.30  Shear modulus (G) on Mabel Creek silt conditioned at 2 freeze-thaw 

cycles:(a) G vs N; (b) G vs ru; (c) G vs γ 
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Figure 5.31  Damping ratio (D) on Mabel Creek silt conditioned at 2 freeze-thaw 

cycles:(a) D vs N; (b) D vs ru; (c) D vs γ  
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Figure 5.32  Shear modulus (G) on Mabel Creek silt conditioned at 4 freeze-thaw 

cycles:(a) G vs N; (b) G vs ru; (c) G vs γ 
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Figure 5.33  Damping ratio (D) on Mabel Creek silt conditioned at 4 freeze-thaw 

cycles:(a) D vs N; (b) D vs ru; (c) D vs γ 
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5.7 The effect of freeze-thaw cycle on dynamic properties  

5.7.1 Effect of freeze-thaw cycles on shear modulus  

An effect of freeze-thaw cycles on shear modulus as a function of the number of load 

cycles was studied for shear strain levels of 0.005%, 0.1%, 0.3%, and 0.8%. The 

results of these studies are shown in Figure 5.34. Figure 5.34a shows the influence of 

freeze-thaw cycles on shear modulus for a small shear strain of 0.005% and any given 

numer of loading cycles. The shear modulus remained approximately constant with 

the number of load cycles. The unfrozen specimen was found to have the smallest 

shear modulus; however, similar shear modulus was obtained for the specimens that 

were subjected to 1, 2, and 4 freeze-thaw cycles at γ=0.005%.  

Shear modulus as a function of the number of load cycles for specimens subjected to 

1, 2, and 4 freeze-thaw cycles at γ=0.1% is shown in Figure 5.34b. The influence of 

freeze-thaw cycles on the specimens at γ=0.1% is similar to that of specimens in 

Figure 5.34a. 

Shear modulus for the large strain level of 0.3% on Mabel Creek specimens subjected 

to 1, 2, and 4 freeze-thaw cycles is shown in Figure 5.34c.  In these tests, the data 

showed that the shear modulus decreased as loading cycles increased.  The smallest 

shear modulus still occurred for the unfrozen specimen, while the largest shear 

modulus occurred for the specimen subjected to 4 freeze-thaw cycles. The second 

largest shear modulus was observed for the specimen subjected to 2 freeze-thaw 

cycles. The difference of shear modulus between the specimens subjected to 2 and 4 

freeze-thaw cycles became more and more obvious with increasing loading from N=5 

to N=50.   

The shear modulus for specimens conditioned at 1, 2, and 4 freeze-thaw cycles was 

found to be affected by the freeze-thaw cycles at the large shear strain level of 0.8%.  
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At this shear strain, shear modulus increased with the number of load cycles; see 

Figure 5.34d. The smallest shear modulus still occurred with unfrozen specimens. 

Specimens that experienced 1 freeze-thaw cycle had the second smallest shear 

modulus. The largest shear modulus occurred for the specimen that experienced 4 

freeze-thaw cycles.  

 

Figure 5.34  Effect of freeze-thaw cycles on shear modulus of Mabel Creek silt 
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The influence of cyclic shear strain on shear modulus for specimens that were 

subjected to 1, 2, and 4 freeze-thaw cycles is shown in Figure 5.35. The data show 

that shear modulus will always decrease with increasing shear strain. The lower value 

of shear modulus (lower bound) occurs for the unfrozen specimens. As the number of 

freeze-thaw cycles increased, the shear modulus increased. Normalized shear modulus 

was found to reduce with cyclic shear strain for all specimens; see Figure 5.36. The 

effect of freeze-thaw cycles on shear modulus appears to be minimal; see Figure 5.36. 

 

Figure 5.35  Shear modulus versus cyclic shear strain on Mabel Creek silt that 

experienced the different freeze-thaw cycles for N=10 
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Figure 5.36  The modulus reduction (G/Gmax) versus γ in specimens conditioned at 

various freeze-thaw cycles 

 

The effect of freeze-thaw cycles on dynamic shear modulus for specimens of Mabel 

Creek silt as a function of excess pore water pressure ratio was compared at γ=0.1%, 

γ=0.3%, and γ=0.8%; see Figure 5.37. For γ=0.005%, an unfrozen specimen was 

found to have the largest shear modulus. For γ=0.1%, an unfrozen specimen was 

found to have the smallest shear modulus, and a specimen conditioned at 1 

freeze-thaw cycle gave the second smallest shear modulus. Similar trends in shear 

modulus were observed at γ=0.3%; however, shear modulus did not appear to be 

affected by the number of freeze-thaw cycles. A similar trend in shear modulus was 

also observed when γ=0.8%; however, the difference in shear modulus between the 

specimen subjected to 1 freeze-thaw cycle and the specimen subjected to 2 

freeze-thaw cycles was not obvious.  
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Figure 5.37  Shear modulus (G) versus ru on Mabel Creek silt experiencing the 

different freeze-thaw cycles 

 

Figure 5.38 to Figure 5.41 show the effects of freeze-thaw cycles on shear modulus 

for specimens at shear strains of 0.005%, 0.1%, 0.3%, and 0.8%. Figure 5.38 

demonstrates the variation of shear modulus with increasing freeze-thaw cycles at the 

small shear strain of 0.005%. One freeze-thaw cycle dramatically increased the shear 

modulus, but increasing freeze-thaw cycles from 2 to 4 did not affect the shear 

modulus. At the large shear strain levels of 0.1%, 0.3%, and 0.8%, shear modulus was 
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found to increase as the number of freeze-thaw cycles were increased from 1 to 4.  

However, this trend was not obvious at the shear strain of 0.1%. As the shear strain 

level was increased from 0.1% to 0.8%, this trend became more and more significant. 
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Figure 5.38  Shear modulus versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.005% 
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Figure 5.39 Shear modulus versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.1% 
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Figure 5.40  Shear modulus versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.3% 
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Figure 5.41  Shear modulus versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.8% 

5.7.2 Freeze-thaw cycle effects on damping ratio  

As shown in Figure 5.42, the influence of freeze-thaw cycles on the damping ratio at 

various loading cycles was studied for shear strain levels of 0.005%, 0.1%, 0.3%, and 

0.8%. Figure 5.42a shows the variation in damping ratio for the Mabel Creek silt 

conditioned at 1, 2, and 4 freeze-thaw cycles at the small shear strain of 0.005%. The 
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damping ratios for all specimens were nearly constant during the whole cyclic loading 

process. A specimen subjected to 4 freeze-thaw cycles was found to have the smallest 

damping ratio. The unfrozen specimen had the second smallest damping ratio. The 

damping ratios for specimens subjected to 1 and 2 freeze-thaw cycles were nearly the 

same; see Figure 5.42. The difference between damping ratios for the unfrozen 

specimen and the specimen subjected to 4 freeze-thaw cycles was less than 1%. The 

difference between damping ratios for the unfrozen specimen and the specimen 

experiencing 1 and 2 freeze-thaw cycles was less than 2%. 

Figure 5.42b provides a comparison of damping ratios as a function of number of 

loading cycles on Mabel Creek silt when specimens were subjected to 1, 2, and 4 

freeze-thaw cycles at the shear strain level of 0.1%. At the large shear strain of 0.1%, 

all specimens showed a trend that the damping ratio will decrease with an increase in 

the number of load cycles. The smallest damping ratios were obtained on an unfrozen 

specimen, and the second smallest damping ratio occurred on a specimen that had 

been subjected to 1 freeze-thaw cycle. Damping ratio for specimens subjected to 4 

freeze-thaw cycles had a slightly larger value than that of specimens subjected to 2 

freeze-thaw cycles; however, the difference between damping ratios for these two 

specimens was very small (i.e., less than 1%). 

Figure 5.42c shows the variation in the damping ratio as a function of the number of 

loading cycles on the Mabel Creek silt subjected to 1, 2, and 4 freeze-thaw cycles at a 

shear strain level of 0.3%. For the first 10 loading cycles, the damping ratios for 

specimens subjected to different freeze-thaw cycles displayed the same trend 

illustrated in Figure 5.42b. However, a slightly increase in the damping ratio for a 

specimen subjected to 1 freeze-thaw cycle after 10 loading cycles changed this trend. 

The damping ratios for a specimen experiencing 1 freeze-thaw cycle became larger 

than that for a specimen experiencing 2 freeze-thaw cycles, but were still smaller than 

those for a specimen experiencing 4 freeze-thaw cycles. 



 

 

 130 

Damping ratio as a function of the number of load cycles for specimens subjected to 1, 

2, and 4 freeze-thaw cycles at a large shear strain level of 0.8% is shown in Figure 

5.42d. A dramatic increase in damping ratio was found to occur for unfrozen 

specimens with increasing loading cycles. Before 30 load cycles, the unfrozen 

specimen had the smallest damping ratio, but the damping ratio became the largest 

after 30 loading cycles. The influence of freeze-thaw cycles on damping ratios for 

specimens subjected to 1, 2, and 4 freeze-thaw cycles at γ=0.8% was difficult to 

ascertain. Damping ratios were found to be nearly the same for all load cycles.   

 

Figure 5.42  Effect of freeze-thaw cycles on damping ratio of Mabel Creek silt  
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Damping ratios for unfrozen specimens subjected to 1, 2, and 4 freeze-thaw cycles 

were evaluated in terms of the cyclic shear strain, and are shown in Figure 5.43. 

Damping ratios from unfrozen specimens formed the lower bound. The freeze-thaw 

cycles increased damping ratio; however, damping ratios in specimens experiencing 1, 

2, and 4 freeze-thaw cycles were nearly the same.   

 

Figure 5.43  Damping ratio versus cyclic shear strain on Mabel Creek silt experiencing 

the different freeze-thaw cycles for N=10 

 

The effect of freeze-thaw cycles on damping ratio and on the excess pore water 

pressure ratio were compared at γ=0.005%, γ=0.1%, γ=0.3%, and γ=0.8% as shown in 

Figure 5.44. For γ=0.005%, the specimen conditioned at 4 freeze-thaw cycles was 

found to have a small damping ratio. For γ=0.1%, the unfrozen specimen and the 

specimen experiencing 1 freeze-thaw cycle showed similar damping ratios: both were 

less than those of the specimens that experienced 2 and 4 freeze-thaw cycles. The 
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largest damping ratios were found for specimens that were subjected to 2 and 4 

freeze-thaw cycles. At γ=0.3%, a specimen conditioned at 2 and 4 freeze-thaw cycles 

provided the upper bound in damping ratios. Only the unfrozen specimen provided 

the lower bound of damping ratio. At γ=0.8%, damping ratios for specimens subjected 

to 1, 2, and 4 freeze-thaw cycles were indistinguishable.  An unfrozen specimen had 

the lowest damping ratio when ru < 0.8. An additional increase in ru dramatically 

increased damping ratios for the unfrozen specimens.  

 

Figure 5.44  Damping ratio (D) versus ru on Mabel Creek silt experiencing the different 

freeze-thaw cycles  
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The effect of up to 4 freeze-thaw cycles on damping ratios on specimens of the Mabel 

Creek silt was compared and evaluated for the number of freeze-thaw cycles at 

different shear strain levels of 0.005%, 0.1%, 0.3%, and 0.8%; see Figure 5.45 to 

Figure 5.48. At a small shear strain of 0.005%, 1 freeze-thaw cycle caused an increase 

in the damping ratio. When specimens were subjected to an additional freeze-thaw 

cycle (i.e., 2 freeze-thaw cycles) the damping ratio remained nearly the same. When 

specimens were subjected to 4 freeze-thaw cycles, the damping ratio changed from 

5% to 2%. In general, the variation in damping ratio with increase in number of 

freeze-thaw cycles from 0 to 4 was very small and less than 3%. For a shear strain 

level of 0.1%, damping ratio was found to increase for freeze-thaw cycles from 0 to 4. 

A similar trend was found for the damping ratio when the freeze-thaw cycles were 

increased at the shear strain of 0.3%; see Figure 5.47. At the largest shear strain of 

0.8%, a dramatic increase in damping ratio was found to occur for unfrozen 

specimens when the number of load cycles was increased. The effect of freeze-thaw 

cycles on damping ratio is obvious between the unfrozen specimen and the specimen 

experiencing 1 freeze-thaw cycle. However, there was little effect on the damping 

ratio when the number of freeze-thaw cycles was changed from 1 to 4 at γ=0.8%. 

Therefore, all these test results show that when specimens were subjected to 1, 2, and 

4 freeze-thaw cycles, the damping ratio was affected primarily in the first freeze-thaw 

cycle. This observation was consistent for shear strain levels of 0.005%, 0.1%, 0.3%, 

and 0.8%. In summary, there was some variation in damping ratio with an increase in 

freeze-thaw cycles from 1 to 4 at all shear strain levels, but the effect was minimal. 

5.8 Discussion of dynamic properties at various freeze-thaw cycles 

As discussed in Section 5.5, dynamic properties for Mabel Creek silt at 1, 2, and 4 

freeze-thaw cycles were correlated with the dynamic properties for fine-grained soils 

with different PIs from other investigators. This information may be seen in Figure 

5.49 and Figure 5.50. The damping ratio for the Mabel Creek silt experiencing 
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freeze-thaw cycles was higher than that found for fine-grained soils by Vucetic and 

Dobry (1991). However, freeze-thaw cycles did not induce a significant difference in 

normalized shear modulus reduction or the normalized shear modulus reduction at 

various freeze-thaw cycles. The values from the Mabel Creek silt were grouped 

between high and low values of PI=0 and PI=15 by Vucetic and Dobry (1991).  
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Figure 5.45  Damping ratio versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.005% 
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Figure 5.46  Damping ratio versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.1% 
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Figure 5.47  Damping ratio versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.3% 
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Figure 5.48  Damping ratio versus number of freeze-thaw cycles on Mabel Creek silt 

for γ=0.8% 
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Figure 5.49  Comparison of damping ratio between Mabel Creek silt conditioned at 

various freeze-thaw cycles and fine-grained soil (from Vucetic and Dobry 

1991) 

 

Figure 5.50  Comparison of normalized shear modulus reduction between Mabel 

Creek silt conditioned at various freeze-thaw cycles and fine-grained soil 

(from Vucetic and Dobry 1991) 
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5.9 Thermal conditioning path effect on dynamic properties  

Similarly, the effect of thermal conditioning paths on dynamic properties was 

investigated at the target temperatures of 0.5ºC and -0.2ºC. A comparison of dynamic 

properties for different thermal conditioning paths was conducted under the 

conditions of given number of loading cycles, given excess pore pressure ratio at large 

cyclic shear strain, and given cyclic shear strain. The large strain was chosen when 

checking the variation of dynamic properties with increasing number of loading 

cycles or excess pore pressure.  

Figure 5.51 shows the comparison of G for different thermal conditioning paths at a 

target temperature of 0.5ºC. From the degradation of G with increasing N at γ=0.3% 

as shown in Figure 5.51a, the specimen conditioned on Path 3 displays smaller shear 

modulus in comparison with the specimens conditioned on Path 1 and Path 2. 

Conditioning Path 1 caused the highest shear modulus before N=30; however, further 

increasing of N made G of the specimen on Path 3 decrease to a smaller value than 

that of the specimen on Path 2. But when the excess pore pressure ratio is considered 

in terms of the degradation of G as shown in Figure 5.51b, it is clear that the 

conditioning on Path 1 causes the highest G in the specimen. As shown in Figure 

5.51c, the curves of G versus cyclic shear strain γ at N=10 also display the highest 

shear modulus in specimens conditioning on Path 1. The exception was for γ=0.8, 

where G at N=10 on Path 3 was higher than G on Path 2. This is because higher pore 

pressure generation occurred in specimens on Path 2. 

The impact of thermal conditioning paths on damping ratio D at the target 

temperature of 0.5ºC is shown in Figure 5.52. Figure 5.52a and Figure 5.52b display 

comparisons of D at γ=0.1%. Clearly, the highest value of D was observed in the 

specimen on Path 2, and D in the specimen on Path 3 had the lowest value. The curve 

of D and γ also shows that the conditioning of Path 3 makes D of the specimen less, 
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as shown in Figure 5.52c. This is perhaps because less freezing had occurred in 

specimens on Path 3 in comparison with the other two conditioning paths. 

The impact of thermal conditioning paths on G and D of Mabel Creek silt at the target 

temperature of -0.2ºC is displayed in Figure 5.53 and Figure 5.54. The conditionings 

of Path 1 and Path 2 both caused a similar constant G with increasing N at γ=0.1%, as 

shown in Figure 5.53a and Figure 5.53b, which is perhaps because the specimens 

were still in a frozen state. However, the conditioning of Path 3 caused a significantly 

lower value of G at γ=0.1%. A similar effect of thermal conditioning paths on G was 

observed for the curves of G versus γ, as shown in Figure 5.53c. Though the similar 

impact of Path 1 and Path 2 was observed on G of specimens at γ=0.1%, the situation 

changed with the consideration of D at γ=0.1%. From Figure 5.54a and Figure 5.54b, 

the specimens on Path 1 display the largest D, the specimens on Path 2 the second 

largest, and the specimens on Path 3 the third largest. The curve of D versus γ, as 

shown in Figure 5.54c, also show a similar trend of the impact of thermal 

conditioning paths on D.  

Different conditioning paths caused different dynamic properties, though the final 

conditioning temperatures at the cyclic loading test were the same. This can probably 

be attributed to the different freezing and thawing state on the different conditioning 

paths. For the target temperature of 0.5ºC, the longer conditioning at 0.5ºC (Path 2) 

caused much more thawing than Path 1. Path 3 did not go through the frozen state, 

and the specimen remained at nearly completely unfrozen state. For the target 

temperature of -0.2ºC, Path 1 and Path 2 caused slow thawing in the specimen; the 

effect of this thawing was not obvious. The conditioning of Path 3 was to freeze soil 

specimens, thus, a larger unfrozen portion existed in specimens on Path 3 than in 

specimens on Path 1 and Path 2. 
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Figure 5.51  Effect of thermal conditioning paths on G of Mabel Creek silt at the target 

temperature of 0.5ºC 
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Figure 5.52  Effect of thermal conditioning paths on D of Mabel Creek silt at the target 

temperature of 0.5ºC 
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Figure 5.53  Effect of thermal conditioning paths on G of Mabel Creek silt at the target 

temperature of -0.2ºC 
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Figure 5.54  Effect of thermal conditioning paths on D of Mabel Creek silt at the target 

temperature of -0.2ºC 
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5.10 Degradation of dynamic shear modulus in undrained cyclic tests 

When the Mabel Creek silt was cyclically loaded under undrained strain-controlled 

conditions, the dynamic shear modulus was observed to decrease with increasing 

loading cycles due to an increase in pore water pressure and a corresponding decrease 

in effective confining pressure. Idriss et al. (1978) found that the degradation of shear 

modulus with increasing loading cycles in cohesive soil would conform to the 

following equation: 

        GN=N
-t
G1, 

in which N is the number of loading cycles; t is the degradation parameter that is 

related to PI, overconsolidation ratio, and cyclic strain amplitude; and G1 is the shear 

modulus at the end of the first loading cycle.  

In this study, this model was extensively applied to the Mabel Creek silt at various 

conditioned temperatures and freeze-thaw cycles. A regression was applied to this 

model in order to attain a degradation parameter. This was done to predict the 

variation in shear modulus with the number of loading cycles. The data correlated 

well with this model. Thus, it is assumed that the degradation parameter indicates that 

the model of Idriss et al. (1978) is applicable for Mabel Creek silt. A summary of the 

degradation parameter on Mabel Creek silt at various temperatures is presented in 

Table 5.1. The results show that the degradation parameter increases with increasing 

cyclic strain amplitude. This is consistent with findings by Idriss et al. (1978). The 

specimens conditioned at -0.2ºC are not included in these regressions. This is because 

the shear modulus remained the same regardless of the number of load cycles.   
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Table 5.1  Degradation parameter of shear modulus on Mabel Creek silt 

Specimen  
t 

γ=0.1% γ=0.3% γ=0.8% 

1 0.042  0.173  0.425  

2 0.035  0.115  0.324  

3 0.030  0.111  - 

4 0.024  0.091  - 

5 0.032  0.177  - 

6 0.033  0.100  0.264  

7 0.031  0.083  0.257  

Note:   1: Unfrozen silt specimen 

  2: Specimens conditioned at 24ºC or experiencing 1 freeze-thaw cycle  

  3: Specimens conditioned at 5ºC 

  4: Specimens conditioned at 1ºC 

  5: Specimens conditioned at 0.5ºC 

  6: Specimens experienced 2 freeze-thaw cycles 

  7: Specimens experienced 4 freeze-thaw cycles 

 

Normalized shear modulus degradation (the ratio of shear modulus at N=n to shear 

modulus at N=1) is presented in Figure 5.55 to Figure 5.56. Normalized shear 

modulus degradation was used to evaluate temperature effect on the degradation of 

shear modulus for specimens at γ=0.1% and γ=0.3%. At γ=0.1%, the degradation 

curves for the specimens conditioned at different temperatures were within a narrow 

band, but the effects that temperature had on the results were uncertain. However, 

temperature effect on degradation of shear modulus was observed at γ=0.3%. At 

γ=0.3%, a specimen conditioned at 0.5ºC and a unfrozen specimen were found to 

have similar degradation curves, which were below the degradation curves at 1ºC, 5ºC, 

and 24ºC. The shear modulus degradation curves for specimens conditioned at 5ºC 

and 24ºC behaved in a similar manner. The specimen conditioned at 1ºC had the 

slowest degradation of shear modulus.  
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Figure 5.55  The degradation curves of unfrozen Mabel Creek silt and Mabel Creek silt 

conditioned at 0.5ºC, 1ºC, 5ºC, and 24ºC at γ=0.1% 
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Figure 5.56  The degradation curves of unfrozen Mabel Creek silt and Mabel Creek silt 

conditioned at 0.5ºC, 1ºC, 5ºC, and 24ºC at γ=0.3% 

 

Degradation parameters for Mabel Creek silt conditioned at different temperature was 

evaluated as a function of cyclic strain as shown in Figure 5.57. Figure 5.57 provides 

a possible prediction of the degradation parameter for a given shear strain and a given 

temperature condition. The degradation parameter for Mabel Creek silt behaved 

nearly linearly. It shows an increase with increasing cyclic strain. The distinction of 
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these degradation parameters due to temperature effect in Mabel Creek silt was not 

significant when γ was small (0.1%); however, the distinction became more and more 

obvious with increasing cyclic strain. Unfrozen specimens and the specimens 

conditioned at 0.5ºC may be categorized together for the degradation parameter and 

showed a similar trend. The specimens conditioned at 1ºC, 5ºC, and 24ºC may also be 

categorized together for the degradation parameter. A similar trend of the degradation 

parameter, which was different from the trend for the unfrozen specimens and the 

specimens conditioned at 0.5ºC, was observed for the specimens conditioned at 1ºC, 

5ºC, and 24ºC. 
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Figure 5.57  Degradation parameter (t) versus γ on unfrozen Mabel Creek silt and 

Mabel Creek silt conditioned at 0.5ºC, 1ºC, 5ºC, and 24ºC 

The freeze-thaw cycle effect on the degradation of shear modulus of Mabel Creek silt 

was evaluated as normalized shear modulus gradation curves at γ=0.1%, γ=0.3%, and 

γ=0.8%, as shown in Figure 5.58 to Figure 5.60. Like Figure 5.55, the freeze-thaw 

cycle effect on the degradation of shear modulus for the Mabel Creek silt was difficult 

to distinguish at a small shear strain level of 0.1%. However, with increasing shear 

modulus, the freeze-thaw cycle effect on the degradation of shear modulus for Mabel 

Creek silt became significant. At γ=0.3% and γ=0.8%, the degradation of shear 
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modulus with an increasing number of loading cycles became smaller and smaller 

with an increasing number of freeze-thaw cycles.  
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Figure 5.58  The degradation curves of Mabel Creek silt experiencing freeze-thaw 

cycles at γ=0.1% 
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Figure 5.59  The degradation curves of Mabel Creek silt experiencing freeze-thaw 

cycles at γ=0.3% 



 

 

 148 

1.0

0.8

0.6

0.4

0.2

0.0

G
/G

1

1 10 100

Number of cycles, N

 Unfrozen Mabel Creek silt

 1 freeze-thaw cycle

 2 freeze-thaw cycles

 4 freeze-thaw cycles

s3'=100kPa;e=1.06;g=0.8%

 

Figure 5.60  The degradation curves of Mabel Creek silt experiencing freeze-thaw 

cycles at γ=0.8 % 

 

The degradation parameters for Mabel Creek silt experiencing a different number of 

freeze-thaw cycles were evaluated as a function of cyclic strain; see Figure 5.57. This 

figure provides engineers with a possible prediction of the degradation parameter for a 

given shear strain and a given freeze-thaw cycle. For small shear strain, the effect of 

the freeze-thaw cycles on the degradation parameter was not obvious; however, with 

an increase in cyclic strain, the influence of the freeze-thaw cycles on the degradation 

parameter became more and more significant. In general, increasing the number of 

freeze-thaw cycles from 1 to 4 decreased the degradation parameter for any given 

cyclic shear strain. However, with an increase in the number of freeze-thaw cycles, 

the decrease of the degradation parameter became more and more obvious. A trend 

that the degradation parameter increases with increased cyclic shear strain also is 

observed in Figure 5.61. 

5.11 Summary 

Initially, this chapter provided an introduction to the dynamic characteristics 

(damping ratio and dynamic shear modulus) for reconstituted specimens of unfrozen 
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Mabel Creek silt, Mabel Creek silt conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, and -0.2ºC, 

and Mabel Creek silt conditioned at 2 and 4 freeze-thaw cycles. The effect of 

temperature on dynamic characteristics of Mabel Creek silt was studied by comparing 

test results between Mabel Creek silt conditioned at 24ºC, 5ºC, 1ºC, 0.5ºC, -0.2ºC, and 

unfrozen Mabel Creek silt. Moreover, the impact of freeze-thaw cycles on dynamic 

characteristics was examined through a comparison of damping ratio and dynamic 

shear modulus on the unfrozen Mabel Creek silt and Mabel Creek silt conditioned at 1, 

2, and 4 freeze-thaw cycles. The impact of temperature and freeze-thaw cycling on 

dynamic properties was further evaluated by comparison of results in this study with 

previous results from the literature. 
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Figure 5.61  Degradation parameter (t) versus γ on Mabel Creek silt experiencing 

freeze-thaw cycles 

The applicable results in this study show that when Mabel Creek silt is near the 

freezing temperature, regardless of the conditioned temperatures, there will be a 

decrease in the damping ratio. The trend was changed when the specimens liquefied. 

In general, Mabel Creek silt conditioned at a temperature from -0.2ºC to 24ºC showed 

a decrease in the damping ratio. Among these different thawing temperatures from 

-0.2ºC to 24ºC, the largest damping ratios occurred for specimens thawed at -0.2ºC, 

and the second largest damping ratio was for specimens thawed at 0.5ºC. Damping 
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ratios for specimens conditioned at 1ºC, 5ºC, and 24ºC were nearly the same (they 

were grouped in a very narrow band). Unfrozen specimens had the lowest damping 

ratio. For dynamic shear modulus, this freezing and thawing process, regardless of the 

thawing temperatures, increased shear modulus. In general, the largest increase of 

shear modulus occurred for Mabel Creek silt thawed at -0.2ºC, and the second largest 

increase of shear modulus occurred for Mabel Creek silt thawed at 0.5ºC. However, 

the largest increase in shear modulus was changed when the pore water pressure was 

close to the effective confining pressure (i.e., the liquefaction state).  

Increasing the number of freeze-thaw cycles for shear strain larger than 0.01% 

increased the damping ratio and the shear modulus. The decrease in the damping ratio 

and the shear modulus became smaller and smaller with an increase in the number of 

freeze-thaw cycles. When the number of freeze-thaw cycles was increased from 2 to 4, 

a slight increase in damping ratio and shear modulus was observed. However, this 

trend still was changed when Mabel Creek silt liquefied or was close to liquefaction.  

By combining dynamic properties for the Mabel Creek silt at near freezing and above 

freezing temperatures into dynamic properties for a frozen silt from Czajkouski and 

Vinson (1980), there may be a hypothesis that damping ratio increases with an 

increase in temperature when specimens are below freezing.  Further, the dynamic 

properties reach a maximum at near freezing temperature, but decrease with 

additional increase in temperature above freezing. Also, shear modulus always 

decreased with increase of temperature from below freezing temperatures to above 

freezing temperature.  

The Unfrozen Mabel Creek silt is a low plastic soil with a PI of 5.3. This soil has 

dynamic characteristics that are consistent with results from Vucetic and Dobry 

(1991). The condition of an above freezing temperature from 1ºC to 24ºC only 

increased damping ratio and induced a damping ratio curve equal to or above the 
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curve at PI=0. Near freezing temperature and a treatment of freeze-thaw cycles caused 

an increase of damping ratio and formed damping ratio curves far above the upper 

bound for fine-grained soil with PI=0-200 attained from Vucetic and Dobry (1991). 

But the normalized shear modulus reduction is not significantly affected by 

freeze-thaw cycles and temperature.  

The thermal conditioning path was found to strongly affect the dynamic properties of 

Mabel Creek silt. This investigation was conducted to compare the pore pressure 

generation of Mabel Creek silt at 0.5ºC and 0.2ºC but through three different 

conditioning paths. The comparison indicates that the conditioning paths will affect 

dynamic properties of Mabel Creek silt, which is because the different conditioning 

paths cause the different frozen portion within the soil.   

The degradation of shear modulus under undrained cyclic loadings may be reflected 

by the Idriss et al. (1978) model. The degradation parameter (t) for Mabel Creek silt 

conditioned at each thermal condition was attained from test results in this study. For 

each thermal condition, the degradation parameter was found to be proportional to 

increased cyclic shear strain. The temperature effect was investigated for the 

degradation parameter. Unfrozen soil and the Mabel Creek silt conditioned at 0.5ºC 

showed a similar also degradation parameter while the Mabel Creek silt conditioned 

at 24ºC, 5ºC, and 1ºC also showed similar degradation parameters. Also, the gradation 

parameter decreased with increasing freeze-thaw cycles.  
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6 Post-cyclic-loading Settlement 

After soil is subjected to cyclic loading, an increase in pore water pressure in a 

saturated soil will dissipate. This difference in pore water pressure between soil 

boundaries and the micro-structure is referred to as reconsolidation (Ishihara 1996). 

Reconsolidation displaces water out of the saturated soil while dissipating pore water 

pressure. Correspondingly, the gross volume for a saturated soil will decrease because 

the incompressible water mitigates out of the soil so as to eventually cause the soil to 

settle. The amount of post-cyclic-loading settlement is dependent on the discharged 

water volume and dissipated pore water pressure caused by cyclic loadings. Lee and 

Albaise (1974) concluded that reconsolidated volumetric strain, εv, (the ratio of the 

discharged water volume, ΔV, to the gross soil volume, V) for non-liquefaction 

conditions was determined by the dissipated pore pressure. Reconsolidated volumetric 

strain increased with an increase in the dissipated pore water pressure developed 

during undrained cyclic loading. How pore water pressure was generated did not 

affect the volume strain to reconsolidate. Nagase et al. (1988) studied the 

reconsolidated volume strain after liquefaction. A conclusion was made that the 

reconsolidated post-liquefaction settlements for the liquefaction state were different, 

even for the same 100% excess pore water pressure ratio, i.e., the pore water pressure 

is close or equal to the confining pressure. Pore water pressure is not the only 

measurement to determine post-liquefaction settlement magnitudes. Maximum shear 

strain is introduced to determine volumetric strain following completed liquefaction. 

The abrupt increase of reconsolidated volumetric strain after liquefaction may be 

explained as an increase of maximum shear strain following liquefaction.  

Though the excess peak pore water pressure was applied in most previous research 

(Lee and Albaise 1974; Derakhshandi et al. 2008) as the main factor influening 

post-cyclic-loading settlement, the excess peak pore water pressure is not an actual 
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value to account for dissipation causing settlement. From the excess peak pore water, 

the elastic cyclic pore water pressure is recoverable and not included in the discharged 

water volume (Dobry et al. 1982). Thus, excess pore water pressure was used in this 

study to represent an important factor in predicting post-cyclic-loading settlement. 

Certainly, the excess peak water pressure also was applied in order to make a 

comparison with previous research.  

6.1 Post-cyclic-loading settlement for unfrozen Mabel Creek silt 

Figure 6.1 shows reconsolidated volume strain as a function of excess pore water 

pressure ratio for specimens of unfrozen Mabel Creek silt. The unfrozen specimens 

refer to the specimens without any freezing or thawing treatments. The results from 

the unfrozen specimen were considered as a baseline in the analysis of 

post-cyclic-loading settlement. Among the data points, five data were obtained from 

the cyclic triaxial strain-controlled tests. The maximum shear strain level in the cyclic 

triaxial strain-controlled test was 0.8%. This is the only data point to cause 

liquefaction in all the cyclic strain-controlled tests. In this study, 4 cyclic triaxial 

stress-controlled tests conducted and terminated at 10% axial strain were used as part 

the study to predict post-liquefaction settlement on unfrozen specimens. 

Post-cyclic-loading settlement is dependent on both: (a) the increase in pore water 

pressure and (b) the maximum shear strain under cyclic loading. It is independent of 

how the pore water pressures are generated (Lee and Albaise 1974). Therefore, in this 

study the susceptibly of post-cyclic-loading settlement may be addressed from all data 

attained by cyclic stress-controlled tests and cyclic strain-controlled tests.  

Figure 6.1 illustrates that the reconsolidated volume strain increased as the excess 

pore water pressure ratio increased; however, the increase in reconsolidated 

volumetric strain was slow and flat when ru was small. When ru was equal to 60%, the 

reconsolidated volumetric strain only reached 1%. With further increases in ru, the 
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increase in reconsolidation volumetric strain speeded up. This was especially true 

when ru was close to 0.90, the liquefaction state. Near liquefaction, the reconsolidated 

volumetric strain changed dramatically. The reconsolidated volumetric strain (εv) at ru 

= 92.5% was 3.1%, but the reconsolidated volumetric strain (εv) at ru = 93% and ru = 

96% reached 4.4% and 5.0%, respectively. The results also indicated that the pore 

water pressure alone could not reflect the feature of reconsolidated volumetric strain 

on the liquefied soil. Thus, maximum shear strain was introduced in this study to 

describe the variation in post-liquefaction settlement.  

 

Figure 6.1  Reconsolidated volume strain versus excess pore water pressure ratio on 

unfrozen Mabel Creek silt  

 

Figure 6.2 shows the reconsolidated volumetric strain as a function of the maximum 

shear strain for specimens of liquefied unfrozen Mabel Creek silt. The reconsolidated 

volumetric strain was distinguished by the maximum shear strain, though the excess 

pore water pressure ratios were close and in the range of 92-96%.  
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Figure 6.2  Reconsolidated volume strain versus the max shear strain on unfrozen 

Mabel Creek silt 

6.2 Post-cyclic-loading settlement of Mabel Creek silt conditioned at 0.5ºC, 1ºC, 

5ºC, and 24ºC 

The reconsolidated volume strain as a function of the excess pore water pressure ratio 

for the Mabel Creek silt conditioned at 1ºC, 5ºC, and 24ºC is presented in Figure 6.3. 

The consolidated volumetric strain for the specimens conditioned at these three 

temperatures increased with an increase in the excess pore water pressure ratio. A 

curve drawn through all data for the specimens conditioned at 1ºC, 5ºC, and 24ºC in 

Figure 6.3 indicates that post-cyclic-loading settlement is similar for the three 

temperature conditions. For the reconsolidated volumetric strain of 1%, excess pore 

water pressure ratio reached 67%. For the excess pore water pressure ratio of 90%, the 

reconsolidated volumetric strain reached 2.4%.  

The variability in the reconsolidated volume strain as the excess pore water pressure 

ratio increases is shown in Figure 6.4 for specimens of Mabel Creek silt conditioned 

at 0.5ºC. Though the reconsolidated volumetric strain still increased with the 

increasing excess pore water pressure ratio, specimens conditioned at 0.5ºC had the 

smallest post-cyclic-loading settlement. For the reconsolidated volumetric strain of 
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1%, the excess pore water pressure ratio reached 85%, which was much greater than 

67% for specimens conditioned at 1ºC, 5ºC, and 24ºC. 

  
Figure 6.3  Reconsolidated volume strain versus excess pore water pressure ratio 

on Mabel Creek silt conditioned at 1ºC, 5ºC, and 24ºC 

 

 

Figure 6.4  Reconsolidated volume strain versus excess pore water pressure ratio on 

Mabel Creek silt conditioned at 0.5ºC  
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6.3 Post-cyclic-loading settlement of Mabel Creek silt conditioned by the 

freeze-thaw cycles 

The post-cyclic-loading settlement behavior for reconditioned specimens of Mabel 

Creek silt conditioned at 2 freeze-thaw cycles is shown in Figure 6.5. It is shown that 

for 2 freeze-thaw cycles, reconsolidated volumetric strain increased with an increase 

in the excess pore water pressure ratio. For volumetric strains (εv) less than 1%, the 

increasing trend of volumetric strain (εv) with the increasing ru was slow. The 

volumetric strain (εv) at ru= 29% only reached 0.2%. Volumetric strain (εv) reached 

only 0.7% at ru = 0.61%. However, when the volumetric strain (εv) was greater than 

1%, there was a trend for volumetric strain (εv) to increase quickly for an increase in ru. 

For example, the volumetric strain (εv) at ru = 81% jumped to 2.0%. 

 

Figure 6.5  Reconsolidated volume strain versus excess pore water pressure ratio on 

Mabel Creek silt conditioned after 2 freeze-thaw cycles 

 

For purposes of comparison, the post-cyclic-loading settlement behaviors of 

specimens of Mabel Creek silt were studied for 4 freeze-thaw cycles; see Figure 6.6.  

The results show that the reconsolidated volumetric strain increased with an increase 

in excess pore water pressure ratio. For example, the initial value of the volumetric 
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strain (εv) was 0.17% when ru was equal to 27%. This slowly increased with the 

increasing ru until the volumetric strain (εv) reached 1% at ru = 67%; then the increase 

in volumetric strain was dramatic. For ru=78%, the volumetric strain (εv) jumped to 

1.9%.  

 

 

Figure 6.6  Reconsolidated volume strain versus excess pore water pressure ratio on 

Mabel Creek silt conditioned after 4 freeze-thaw cycles 

 

6.4 Soil types effect on post-cyclic-loading settlement of unfrozen state 

Excess pore water pressure is hypothesized to be the primary factor that influences 

post-cyclic-loading settlement in soils. Excess pore water pressure was extensively 

applied in this study to predict post-cyclic-loading settlement. Most of the previous 

researchers used excess peak pore water pressure in their study. In order to compare 

results of this study with previous studies, the excess pore water pressure was 

converted into excess peak pore water pressure. Post-cyclic-loading settlements for 

non-liquefied soil for three soil types (sand, silty sand, and unfrozen Mabel Creek silt) 

are compared and shown in Figure 6.7. Mabel Creek silt had the highest 

reconsolidated volumetric strain for any given excess peak pore water pressure. 

Monterey sand with loose density had approximate 1.0% reconsolidated volume strain 
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when ru was close to 1.0. Silty sand with 10 to 20% fine content at the same ru was 

found to cause a 2.5% reconsolidated volumetric strain. However, the resulting 

volumetric strain for specimens of Mabel Creek silt may be as much as 3.5% for a 

corresponding ru. It may be estimated that dramatic settlement will be caused in the 

ground under cyclic loadings. Comparison of soil settlement caused by cyclic 

loadings in the liquefaction state also indicates that the silt has a higher susceptibility 

to post-liquefaction settlement than sand, as shown in Figure 6.8. This figure provides 

a comparison between Mabel Creek silt and Fuji sand for a post-liquefaction 

reconsolidated volumetric strain at maximum shear strain. For a given maximum 

shear strain of 4%, the corresponding reconsolidated volumetric strain for the loose 

Fuji river sand only reached about 1.4%. Reconsolidated volumetric strain in the 

Mabel Creek silt may reach 5.0%. Thus, silt has higher post-cyclic-loading settlement 

susceptibly than sand. This is the case regardless of the state of liquefaction or 

non-liquefaction.  

 

Figure 6.7  Comparison of reconsolidated volumetric strains between sand, silty sand, 

and Mabel Creek silt 
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Figure 6.8  Comparison of the characteristics of post-liquefaction volumetric strains 

between sand and Mabel Creek silt 

 

6.5 Temperature rise effect on post-cyclic-loading settlement for frozen or 

partially frozen Mabel Creek silt 

The influence of raising the temperature of frozen or partially frozen specimens of the 

Mabel Creek silt was studied. The post-cyclic-loading settlements for these conditions 

were examined and are presented in Figure 6.9. This figure shows reconsolidated 

volumetric strain and excess pore water pressure ratio response for specimens 

conditioned at 0.5ºC, 1ºC, 5ºC, and 24ºC. Specimens conditioned at 1ºC, 5ºC, and 

24ºC were found to have similar behavior (reconsolidated volumetric strain for any 

given water pressure). It also may be seen that for any given water pressure caused by 

cyclic loadings, unfrozen Mabel Creek silt had the highest reconsolidated volumetric 

strain; the specimen of Mabel Creek silt conditioned at 1ºC, 5ºC, and 24ºC had the 

second highest reconsolidated volumetric strain; and the specimen of Mabel Creek silt 

conditioned at 0.5ºC had the lowest reconsolidated volumetric strain. For example,  

ru = 60% for unfrozen specimens could reach a reconsolidated volumetric strain (εv) of 

1%; and ru = 67% for specimens conditioned at 1ºC, 5ºC, and 24ºC was needed to 

reach reconsolidated volumetric strain (εv ) of 1%. However, for specimens 
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conditioned at 0.5ºC, an ru of 85% was needed to cause a volumetric strain of 1% 

during subsequent reconsolidation. Though post-cyclic-settlement specimen 

susceptibilities conditioned at different temperatures are diverse, similar 

reconsolidated volumetric strains for the specimens conditioned at all 

above-mentioned temperatures occurred for excess pore water pressure ratios less 

than about 40%; see Figure 6.9. With further increase of the excess pore water 

pressure ratio, the diversity of the post-cyclic-loading settlement susceptibility on 

Mabel Creek silt conditioned at different temperatures was manifested.  

6.6 Freeze-thaw-cycles effect on post-cyclic-loading settlement of frozen or 

partially frozen Mabel Creek silt 

The effect of freeze-thaw cycles on post-cyclic-loading settlement for specimens of 

Mabel Creek silt was studied by comparing relationships between reconsolidated 

volumetric strain and the excess pore water pressure ratio on specimens: (a) that were 

prepared for freeze-thaw conditions of 1, 2, and 4 freeze-thaw cycles and (b) that were 

unfrozen. A specimen conditioned at 24ºC actually experienced the process of 1 

freeze-thaw cycle at the same time, thus this thermal condition at 24ºC is referred to 

as 1 freeze-thaw cycle in this section. All data are presented in Figure 6.10. The 

treatment of the freeze-thaw cycles obviously decreases the post-cyclic-loading 

settlement susceptibility. However, the reconsolidated volumetric strains for 

specimens conditioned at 1, 2 and 4 freeze-thaw cycles did not display any difference 

for any given excess pore water pressure. It may indicate that subsequent freeze-thaw 

cycles (more than 4) will not cause any change to the post-cyclic-loading settlement 

susceptibility of Mabel Creek silt. Thus, it is concluded that the first freeze-thaw cycle 

strongly decreases the post-cyclic-loading settlement susceptibility; however, further 

freeze-thaw cycles were found to have minimal influence on the variation of 

post-cyclic-loading settlement susceptibility of the Mabel Creek silt. 
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Figure 6.9  Temperature rise effect on reconsolidated volumetric strain of Mabel 

Creek silt due to dissipation of pore water pressure 

 

Figure 6.10  The freeze-thaw cycles effect on reconsolidated volumetric strain of Mabel 

Creek silt due to dissipation of pore water pressure 
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6.7 Determination of post-cyclic-loading volumetric strain as a function of 

cyclic shear strain on Mabel Creek silt 

The prediction of post-cyclic-loading soil settlement is dependent on equivalent cyclic 

shear strain, and the number of loading cycles. The number of load cycles is 

determined by examining earthquake characteristics or other appropriate cyclic 

loadings.  The number of load cycles is needed in order to estimate the expected pore 

water pressure that will be caused by the estimated cyclic loading.  

Then, the estimated pore water pressure is used to predict the expected settlement that 

is likely to be caused by the dissipation of the pore water pressure. It will be possible 

to avoid the determination of the excess pore water pressure and to directly estimate 

the amount of post-cyclic-loading volumetric strain. For this purpose, the cyclic shear 

strain, γ, and the volumetric strain, εv are combined by giving the excess pore water 

pressure. Combinations of shear strain (γ) and volumetric strain (εv) thus were 

developed and plotted to establish a family of curves for the Mabel Creek silt.  These 

curves were developed to accommodate all thermal conditions (thawed, partially 

frozen, and frozen); see Figure 6.11 to Figure 6.17. The results of this study show that 

the post-cyclic-loading volumetric strain will always increase with an increase in 

cyclic shear strain for any given number of loading cycles. The post-cyclic-loading 

volumetric strain was also found to increase with the number of loading cycles for any 

given cyclic shear strain.  
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Figure 6.11  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt 
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Figure 6.12  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt conditioned at 

0.5ºC 
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Figure 6.13  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt conditioned at 

1ºC 
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Figure 6.14  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt conditioned at 

5ºC 
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Figure 6.15  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt after 1 

freeze-thaw cycle 
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Figure 6.16  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt after 2 

freeze-thaw cycles 
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Figure 6.17  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt after 1 

freeze-thaw cycles 

 

6.8 Summary 

In this chapter, cyclic-loading-induced settlement was examined for: (a) unfrozen 

Mabel Creek silt; (b) Mabel Creek silt conditioned at 0.5ºC, 1ºC, 5ºC, and 24ºC; and 

(c) Mabel Creek silt conditioned at 1, 2, and 4 freeze-thaw cycles. The influence of 

temperature and freeze-thaw cycles was evaluated on cyclic-loading-induced 

settlement. The cyclic-loading-induced settlement for the Mabel Creek silt was 

compared with the research results by others for sands and silty sand. Through this 

comparison, the soil type on cyclic-loading-induced settlement was evaluated. A 

series of simple charts was produced to predict cyclic-loading settlement for the 

Mabel Creek silt.  These charts use cyclic shear strain and the number of loading 

cycles.  

The influence of near freezing temperatures on cyclic-loading-induced settlement for 

the Mabel Creek silt was evaluated. Mabel Creek silt conditioned at 1ºC, 5ºC, and 

24ºC had a similar response for reconsolidated volumetric strains, which was lower 
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than that of an unfrozen specimen. When ru was smaller than 0.4, the reconsolidated 

volumetric strains for specimens conditioned at 1ºC, 5ºC, and 24ºC had a negligable 

response with an unfrozen specimen. When ru was more than 0.4, the difference in 

volumetric strain between specimens conditioned at 1ºC, 5ºC, and 24ºC and unfrozen 

specimens became significant. However, the lowest volumetric strains occurred on 

specimens at a thawing temperature of 0.5ºC for dissipating any given pore water 

pressure.  

Freeze-thaw cycles simulating seasonal climate change decrease the settlement 

susceptibility after undrained cyclic loading. One freeze-thaw cycle caused a decrease 

to cyclic-loading-induced volumetric strain, but the subsequent freeze-thaw cycles 

after 1 freeze-thaw cycle did not further decrease the effect on cyclic-loading-induced 

volumetric strain. 

The influence of soil type on cyclic loading settlement was studied, and it may be 

concluded that silt has a much higher susceptibility to settlement after cyclic loading 

than sand or silty sand. A series of charts for cyclic reconsolidated volumetric strain 

versus cyclic shear strain and number of loading cycles provides the engineer with a 

practical means for predicting cyclic loading type settlements for the Mabel Creek silt. 
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7 Discussion  

7.1 Temperature effect on liquefaction potential, dynamic properties, and 

cyclic-loading-induced settlement 

The Mabel Creek silt conditioned at 0.5ºC had the largest pore water pressure 

generation in comparison with the unfrozen Mabel Creek silt and the Mabel Creek silt 

thawed at 1ºC, 5ºC, and 24ºC. It has been found for soil undergoing cyclic loading 

that a decrease in the soil’s relative density will decrease liquefaction resistance and 

increase pore water pressure generation of soil (Peacock and Seed 1968; DeAlba et al. 

1976; Dobry et al. 1982). In this study, thawing at 0.5ºC was found not to change the 

soil particle distribution and the effective confining pressure; however, it did increase 

the pore water pressure. Liquefaction potential for the silt specimen at 0.5ºC was 

influenced by soil density and soil fabric. It was found that as relative density 

decreased, the shear modulus also decreased. This is inconsistent with results from 

test specimens at other temperature conditions in this study. Thus the only explanation 

for an increase of both pore water pressure generation and shear modulus when the 

specimen was thawed at 0.5ºC is a change of soil density. The ice in Mabel Creek silt 

still was likely not completely melted at 0.5ºC; however, with enough unfrozen water 

induced, a partially frozen structure eventually developed. Soil particles in this 

structure were easily redistributed by the cyclic loading, thus rapid pore water 

pressure generation was observed for the soil specimen conditioned at 0.5ºC under 

cyclic loading. Incompletely melted ice caused high shear modulus, large damping 

ratio, and low post-cyclic-loading settlement. Measurement of the variation of 

unfrozen water content along with the temperature change in partially frozen 

specimens with e=1.06 was conducted to prove that enough unfrozen water was 

thawed at 0.5ºC. A Vitel Hydra Probe was used to measure unfrozen water content. 

This was done by measuring the dielectric constant, which is most indicative of water 



 

 

 170 

content. Figure 7.1 shows the relationship between unfrozen water content and 

temperature on partially frozen and frozen Mabel Creek silt. The largest variation in 

unfrozen water content occurred between -1°C and 1°C; 30% of the unfrozen water 

content melted in this temperature band. Test results show that there is dramatic 

variation in unfrozen water content when the temperature is increased to 0°C. Hence 

the variation in unfrozen water content is very sensitive to variation in temperature 

when the temperature is near 0°C. Figure 7.1 proved that enough unfrozen water was 

thawed at 0.5ºC. Beside, this figure showed only 4% of the unfrozen water content 

was produced when temperatures were between -10°C and -1°C. When temperature 

increased to above 1 °C, the amount of unfrozen water content stayed stable.  
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Figure 7.1  Unfrozen water content versus conditioned temperature in Mabel Creek 

silt 

 

Similar pore water pressure generation between specimens conditioned at 5ºC and 

24ºC was observed, but less than that for the unfrozen Mabel Creek silt. The 

similarity indicated that the frozen Mabel Creek silt was completed thawed at 5ºC, 

thus the same soil fabric for the specimens conditioned at 5ºC and 24ºC caused the 

same pore water pressure generation. Figure 7.2 shows a decrease of void ratio during 

the freezing and thawing process with the thawing temperatures of 5ºC and 24ºC, 
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which indicates that the soil was densified by the freezing and thawing process. It was 

proven that the specimen conditioned at 5ºC or 24ºC has smaller pore water pressure 

generation, larger damping ratio and larger shear modulus than the unfrozen specimen. 

In Figure 7.2, the positive value indicates the soil density increased and the negative 

value means the decrease of soil density. Thus, the post-cyclic-loading settlement on 

Mabel Creek silt conditioned at 5ºC or 24ºC still was smaller than that of Mabel 

Creek silt, though, still larger than that of Mabel Creek silt conditioned at 0.5ºC.  

 

Figure 7.2  Volumetric strain change during freezing and thawing process versus 

temperature 

 

7.2 Effect of freeze-thaw cycles on liquefaction potential, dynamic properties, 

and cyclic-loading-induced settlement  

The obvious densification of freeze-thaw cycles is shown in Figure 7.3. The largest 

densification occurred at 1 freeze-thaw cycle. With increasing freeze-thaw cycles, the 

densification effect became weaker and weaker. The treatment of freeze-thaw cycles 

on Mabel Creek silt decreased pore water pressure generation, increased damping 

ratio, increased shear modulus and decreased post-cyclic-loading settlement; however, 

the variation of these properties became progressively smaller with increasing 
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freeze-thaw cycles. For treatment of freeze-thaw cycles from 2 to 4, little change in 

pore water pressure generation, damping ratio, shear modulus, and post-cyclic-loading 

settlement was observed.  

 

Figure 7.3  Volumetric strain change versus the number of freeze-thaw cycles on 

Mabel Creek silt
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8 Conclusion 

The observations and conclusions grained from this study are: 

 The UAF modified cyclic triaxial cell is applicable to the cyclic loading tests on 

partially frozen or thawed soil.  

 Pore water pressure generation increased with increasing loading cycles and 

increasing cyclic shear strain regardless of the thawing temperature or the number 

of freeze-thaw cycles. Shear modulus (G) of fine-grained soil decreases, and 

damping ratio (D) increases with increasing cyclic shear strain.  

 Frozen Mabel Creek silt thawed at near freezing temperature (0.5ºC) had a 

partially frozen structure, which caused higher pore water pressure generation, 

smaller damping ratio, and higher dynamic shear modulus compared with the 

unfrozen Mabel Creek silt or Mabel Creek silt thawed at 1ºC, 5ºC, and 24ºC. Pore 

water pressure generation and damping ratio were smaller and dynamic shear 

modulus was larger for specimens completely thawed at 5ºC and 24ºC as 

compared to the unfrozen Mabel Creek silt. 

 The drained freezing and thawing process under multi-axial direction densified 

the soil specimen. It increased the dynamic shear modulus, and decreased the 

damping ratio and liquefaction potential. Change of liquefaction potential and 

dynamic properties for Mabel Creek silt caused by freeze-thaw cycles became 

smaller with additional freeze-thaw cycles. Liquefaction potential and dynamic 

properties for the laboratory specimens of Mabel Creek silt that were subjected to 

2 to 4 freeze-thaw cycles remained nearly the same. 

 Pore pressure generation of Mabel Creek silt conditioned at different 

temperatures or number of freeze-thaw cycles can be predicted by the GMP 

model. As the most important parameter in the GMP model, ―Pseudoenergy 

Capacity‖ (PEC), reflects an increasing trend with increased number of 
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freeze-thaw cycles. The effect of near freezing temperature on the PEC of 

partially frozen or thawed Mabel Creek silt is unclear.  

 Under undrained strain-controlled cyclic loading, the trend of G for fine-grained 

soil with increasing loading cycles may be divided into two categories: (1) G does 

not change with variation of loading cycles when γ is less than or near to γt; and 

(2) G will degrade with increasing loading cycles for large γ. The degradation of 

G is attributed to increasing pore pressure generation caused by cyclic loading. 

This degradation of G may be predicted by Idriss et al. (1978) model. The 

degradation parameter (t) reflects the degradation degree of G. Unfrozen soil and 

the specimens conditioned at 0.5ºC have a similar t while the specimens 

conditioned at 24ºC, 5ºC, and 1ºC has a similar t. Also, t decreases with 

increasing freeze-thaw cycles. 

 Under undrained strain-controlled cyclic loading, the trend of D for fine-grained 

soil with increasing loading cycles can be divided into three categories: (1) D 

stays constant with increasing loading cycles for a small γ; (2) D decreases with 

increasing loading cycles for a medium γ (0.1%); and (3) D decreases first and 

then increases with increased loading cycles for a large γ. Variation of D with 

increasing loading cycles may be attributed to the generation of pore pressure. An 

increase of pore pressure will cause decrease of D when ru is less than 40%; and 

an ru increase to 1 will cause increase of D.  

 Increase of temperature from the near-freezing state to the above-freezing state 

will cause a decrease in shear modulus (G). This variation in G as it relates to 

temperature is more sensitive when the temperature is near zero. Damping ratio 

(D) increased with increasing temperature when temperature is under the freezing 

point; however, D will become maximum when the specimen temperature is near 

the freezing point. Increase of temperature above the freezing point will decrease 

D.  

 Reconsolidated volumetric strains for the Mabel Creek silt conditioned at thawing 
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temperatures of 1ºC, 5ºC, and 24ºC had similar responses for a given excess pore 

water pressure ratio, and all of them had lower reconsolidated volumetric strain 

response than that of the unfrozen specimen. In particular, when ru was smaller 

than 0.4, the reconsolidated volumetric strain response was similar between 

conditioned specimens and the unfrozen specimen. This is due to dissipation of 

the pore water pressure. However, when ru is more than 0.4, the difference 

becomes significant.  

 Volumetric strains of specimens conditioned at a 0.5ºC thawing temperature had a 

lower value than specimens conditioned at all other temperatures. The first 

freeze-thaw cycle strongly decreased the post-cyclic-settlement; however, 

subsequent freeze-thaw cycles showed no further decrease in 

cyclic-loading-induced settlement. 

 The Mabel Creek silt had a much higher post-cyclic-settlement than the sand or 

the silty sand.  
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Appendix A. Determination of Void Ratio in Saturated Soil 

The saturated soil’s void ratio may be calculated by water content and specific gravity 

using the following equation:  

e= Gs (WC) 

Where    e = void ratio; 

    Gs = Specific gravity; 

  WC = Water content, %. 

For WC=38.3% and Gs=2.78 for saturated Mabel Creek silt sampled in a site near Mabel 

Creek Bridge,  

e=2.78×38.3%/=1.06 
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Appendix B. Case Analysis 

The following example shows how to predict liquefaction potential and corresponding 

cyclic-loading-induced settlement. Because of limited laboratory results, the amount 

of settlement that can occur after liquefaction is not part of this study. This study does, 

however, provide a guide and methodology for determining the amount of 

post-cyclic-loading settlement under non-liquefaction conditions. An earthquake with 

a Magnitude of 7.5 is applied in this case to address cyclic-loading-induced settlement 

under non-liquefaction conditions.   

 

Consider a site near Mabel Creek Bridge at Mile 76.2 on the Tok Cutoff. The highway 

is subjected to an earthquake that produces a peak ground acceleration of 0.20g at 

Magnitude 7.5. The results from a field exploration are shown in Figure B.1. Let’s 

estimate the possible pore water pressure and the post-earthquake settlement for a 

Mabel Creek silt layer on a day such as November 3, which is the same day that the 

Denali Earthquake (2002) occurred.  

Sandy gravel fill            135 pcf

Silty sand or sandy silt   130 pcf

Mabel Creek silt              90 pcf

12.8ft

29.8ft

3.6ft

9.7ft

 

Figure B.1 Soil profile 
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Figure B.2 Temperature profile 

 

Step 1: Build up the temperature profile at the selected site. 

Thirty years of climate records from Tok, Alaska were obtained from the Western 

Regional Climate Center. Using this data, the expected freezing isotherms or whiplash 

curves were developed and studied to evaluate the expected ground temperature 

profile in Mabel Creek. The temperature profile at this site on November 3 is shown 

in Figure B.2. The Mabel Creek silt layer in this study site is unfrozen on this 

particular day. However, the top 3.6 feet in the Mabel Creek silt layer experience 

seasonal freeze-thaw cycles. This is because the depth, where the value Tmin is 0ºC. 

Approximately 26.2 feet in Mabel Creek silt below the depth for Tmin=0ºC can be 

expected to remain unfrozen. 

Step 2: Determine the equivalent uniform cyclic strain at a selected depth, which was 

caused by wave propagation of seismic events. 

Seismic shear waves are attenuated within the soil. Moreover, a seismic wave is 

irregular waveform, thus an equivalent uniform waveform may be used to 

approximate the irregular seismic waves by wave transformation. Dobry et al. (1982) 
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proposed a simplified method for estimating the amplitude of a uniform cyclic strain; 

this estimate is given by:  

      γcyc= 0.65amaxσvrd/(gG(γcyc ))      (B.1) 

where  amax  is the peak ground surface acceleration; 

  g is the acceleration of gravity; 

  σv is the total vertical stress; 

  rd is the stress reduction factor, and attained from Figure 3; and 

  G(γcyc ) is the shear modulus of the soil at γcyc=γ. 

 

The top 3.6 feet of thickness for the Mabel Creek silt will experience freeze-thaw 

cycles. Subsequently, the stress reduction factor at this location is given by  

 

  σv(z=18.2ft) = (135lb/ft
3
)(12.8ft)+(130lb/ft

3
)(3.6ft)+(90lb/ft

3
)(1.8ft) 

       = 2358lb/ft
2
  

    rd   = 0.95 

 

Figure B.3  Reduction factor with depth below level or gently sloping ground surfaces. 

(After Seed and Idriss 1971) 

 

At 26.2 feet in the unfrozen Mabel Creek silt layer below the depth for for Tmin=0ºC, 
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the stress reduction factor is  

     σv(z=33.1ft) =(135lb/ft
3
)(12.8ft)+(130lb/ft

3
)(3.6ft)+(90lb/ft

3
)(16.7ft)  

          =3699lb/f  

    rd   = 0.90. 

 

The shear modulus (G(γcyc )) is determined by γcyc, the value of γcyc is iteratively 

calculated by the following equation: 

 

     G(γ) = (Gmax)( G/Gmax)        (B.2) 

 

where  Gmax is the maximum shear modulus; 

  G/Gmax is the modulus reduction as shown in Figure B.4. 

 

Gmax is also attained by Hardin and Drnevich’s (1978) method: 

 

     Gmax= 625(OCR)
k
pa

0.5
(σ’m)

0.5
/(0.3+0.7e

2
)    (B.3) 

 

where  OCR is the overconsolidation ratio and 1 in this study; 

  k is the overconsolidation ratio parameter; 

  pa is atmospheric pressure in same units as σ’m; and 

  σ’m is the mean principal effective stress and 100 kpa(14.5psi). 

 

   Hence Gmax= 8337.5 psi. 

Since Mabel Creek silt has a PI of 5.3, the modulus reduction curve at PI = 5.3 is 

applied during iteration. Thus 

 

  γcyc(z=18.2ft) =  0.065% 

     γcyc(z=33.1ft) =  0 .125%. 
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Figure B.4  Modulus reduction curves for fine-grained soils of different plasticity. 

(After Vucetic and Dobry 1991) 

 

Step 3: Determine ru. 

From Table B.1, the equivalent number of loading cycles may be found for Magnitude 

7.5, and 20 cycles is obtained. Using the equivalent number of loading cycles and 

Equation B.3, the corresponding excess pore water pressure ratio (ru) as attained from 

Figure B.5 and Figure B.6 from this report is: 

    ru(z=18.2ft) = 0.155 

    ru(z=33.1ft) = 0.35. 

Generally, soils with ru less than 0.8 will not liquefy. Thus, soils at this site do not 

liquefied. 

Table B.1 Earthquake magnitude, equivalent cycles, and duration (Seed et al. 1976) 

Earthquake magnitude Equivalent cycles Duration of strong shaking, sec 

5.5~6 5 8 

6.5 8 14 

7 12 20 

7.5 20 40 

8 30 60 



 

 

 189 

 

Figure B.5  Excess pore pressure ratios versus cyclic shear strain on unfrozen Mabel 

Creek silt (in this study) 

 

Figure B.6  Excess pore pressure ratios versus cyclic shear strain on Mabel Creek silt 

experiencing 1 freeze-thaw cycle (in this study) 

 

Step 4: Determine the possible settlement due to dissipation of pore water pressure. 

The corresponding reconsolidated volumetric strain due to dissipation of pore water 

pressure may be found from Figure B.7 and Figure B.8 in this report. These are: 

    εv(z=18.2ft) = 0.16%; and  
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    εv(z=33.1ft) = 0.35%. 

The total settlement after the earthquake in the Mabel Creek silt layer is expected to 

be:  

  the total displacement = (0.16%)(3.6ft)+(0.35%*26.2ft) = 0.0975ft = 1.17in. 

 

Figure B.7 Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt (in this study) 

 

Figure B.8  Chart for determination of the post-cyclic-loading volumetric strain as a 

function of cyclic shear strain on unfrozen Mabel Creek silt after 1 

freeze-thaw cycle (in this study) 
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